Files
whisperX/README.md

247 lines
11 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<h1 align="center">WhisperX</h1>
<p align="center">
<a href="https://github.com/m-bain/whisperX/stargazers">
<img src="https://img.shields.io/github/stars/m-bain/whisperX.svg?colorA=orange&colorB=orange&logo=github"
alt="GitHub stars">
</a>
<a href="https://github.com/m-bain/whisperX/issues">
<img src="https://img.shields.io/github/issues/m-bain/whisperx.svg"
alt="GitHub issues">
</a>
<a href="https://github.com/m-bain/whisperX/blob/master/LICENSE">
<img src="https://img.shields.io/github/license/m-bain/whisperX.svg"
alt="GitHub license">
</a>
<a href="https://twitter.com/intent/tweet?text=&url=https%3A%2F%2Fgithub.com%2Fm-bain%2FwhisperX">
<img src="https://img.shields.io/twitter/url/https/github.com/m-bain/whisperX.svg?style=social" alt="Twitter">
</a>
</p>
<p align="center">
<a href="#what-is-it">What is it</a>
<a href="#setup">Setup</a>
<a href="#example">Usage</a>
<a href="#other-languages">Multilingual</a>
<a href="#contribute">Contribute</a>
<a href="EXAMPLES.md">More examples</a>
<a href="https://arxiv.org/abs/2303.00747">Paper</a>
</p>
<img width="1216" align="center" alt="whisperx-arch" src="figures/pipeline.png">
<p align="left">Whisper-Based Automatic Speech Recognition (ASR) with improved timestamp accuracy + quality via forced phoneme alignment and speech-activity batching.
</p>
<h2 align="left", id="what-is-it">What is it 🔎</h2>
This repository refines the timestamps of openAI's Whisper model via forced aligment with phoneme-based ASR models (e.g. wav2vec2.0) and VAD preprocesssing, multilingual use-case.
**Whisper** is an ASR model [developed by OpenAI](https://github.com/openai/whisper), trained on a large dataset of diverse audio. Whilst it does produces highly accurate transcriptions, the corresponding timestamps are at the utterance-level, not per word, and can be inaccurate by several seconds.
**Phoneme-Based ASR** A suite of models finetuned to recognise the smallest unit of speech distinguishing one word from another, e.g. the element p in "tap". A popular example model is [wav2vec2.0](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self).
**Forced Alignment** refers to the process by which orthographic transcriptions are aligned to audio recordings to automatically generate phone level segmentation.
**Voice Activity Detection (VAD)** is the detection of the presence or absence of human speech.
<h2 align="left", id="highlights">New🚨</h2>
- v3 released, 70x speed-up open-sourced. Using batched whisper with [faster-whisper](https://github.com/guillaumekln/faster-whisper) backend!
- v2 released, code cleanup, imports whisper library, batched inference from paper not included (contact for licensing / batched model API). VAD filtering is now turned on by default, as in the paper.
- Paper drop🎓👨🏫! Please see our [ArxiV preprint](https://arxiv.org/abs/2303.00747) for benchmarking and details of WhisperX. We also introduce more efficient batch inference resulting in large-v2 with *60-70x REAL TIME speed (not provided in this repo).
- VAD filtering: Voice Activity Detection (VAD) from [Pyannote.audio](https://huggingface.co/pyannote/voice-activity-detection) is used as a preprocessing step to remove reliance on whisper timestamps and only transcribe audio segments containing speech. add `--vad_filter True` flag, increases timestamp accuracy and robustness (requires more GPU mem due to 30s inputs in wav2vec2)
- Character level timestamps (see `*.char.ass` file output)
- Diarization (still in beta, add `--diarize`)
<h2 align="left" id="setup">Setup ⚙️</h2>
Tested for PyTorch 2.0, Python 3.10 (use other versions at your own risk!)
GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be installed on the system. Please refer to the [CTranslate2 documentation](https://opennmt.net/CTranslate2/installation.html).
### 1. Create Python3.10 environment
`conda create --name whisperx python=3.10`
`conda activate whisperx`
### 2. Install PyTorch2.0, e.g. for Linux and Windows CUDA11.7:
`pip3 install torch torchvision torchaudio`
See other methods [here.](https://pytorch.org/get-started/locally/)
### 3. Install this repo
`pip install git+https://github.com/m-bain/whisperx.git@v3`
If already installed, update package to most recent commit
`pip install git+https://github.com/m-bain/whisperx.git@v3 --upgrade`
If wishing to modify this package, clone and install in editable mode:
```
$ git clone https://github.com/m-bain/whisperX.git@v3
$ cd whisperX
$ git checkout v3
$ pip install -e .
```
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
### Speaker Diarization
To **enable Speaker. Diarization**, include your Hugging Face access token that you can generate from [Here](https://huggingface.co/settings/tokens) after the `--hf_token` argument and accept the user agreement for the following models: [Segmentation](https://huggingface.co/pyannote/segmentation) , [Voice Activity Detection (VAD)](https://huggingface.co/pyannote/voice-activity-detection) , and [Speaker Diarization](https://huggingface.co/pyannote/speaker-diarization)
<h2 align="left" id="example">Usage 💬 (command line)</h2>
### English
Run whisper on example segment (using default params)
whisperx examples/sample01.wav
For increased timestamp accuracy, at the cost of higher gpu mem, use bigger models (bigger alignment model not found to be that helpful, see paper) e.g.
whisperx examples/sample01.wav --model large-v2 --align_model WAV2VEC2_ASR_LARGE_LV60K_960H
Result using *WhisperX* with forced alignment to wav2vec2.0 large:
https://user-images.githubusercontent.com/36994049/208253969-7e35fe2a-7541-434a-ae91-8e919540555d.mp4
Compare this to original whisper out the box, where many transcriptions are out of sync:
https://user-images.githubusercontent.com/36994049/207743923-b4f0d537-29ae-4be2-b404-bb941db73652.mov
### Other languages
The phoneme ASR alignment model is *language-specific*, for tested languages these models are [automatically picked from torchaudio pipelines or huggingface](https://github.com/m-bain/whisperX/blob/e909f2f766b23b2000f2d95df41f9b844ac53e49/whisperx/transcribe.py#L22).
Just pass in the `--language` code, and use the whisper `--model large`.
Currently default models provided for `{en, fr, de, es, it, ja, zh, nl, uk, pt}`. If the detected language is not in this list, you need to find a phoneme-based ASR model from [huggingface model hub](https://huggingface.co/models) and test it on your data.
#### E.g. German
whisperx --model large --language de examples/sample_de_01.wav
https://user-images.githubusercontent.com/36994049/208298811-e36002ba-3698-4731-97d4-0aebd07e0eb3.mov
See more examples in other languages [here](EXAMPLES.md).
## Python usage 🐍
```python
import whisperx
device = "cuda"
audio_file = "audio.mp3"
# transcribe with original whisper
model = whisperx.load_model("large-v2", device)
audio = whisperx.load_audio(audio_file)
result = model.transcribe(audio, batch_size=8)
print(result["segments"]) # before alignment
# load alignment model and metadata
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
# align whisper output
result_aligned = whisperx.align(result["segments"], model_a, metadata, audio, device)
print(result_aligned["segments"]) # after alignment
print(result_aligned["word_segments"]) # after alignment
```
<h2 align="left" id="whisper-mod">Whisper Modifications</h2>
In addition to forced alignment, the following two modifications have been made to the whisper transcription method:
1. `--condition_on_prev_text` is set to `False` by default (reduces hallucination)
<h2 align="left" id="limitations">Limitations ⚠️</h2>
- Whisper normalises spoken numbers e.g. "fifty seven" to arabic numerals "57". Need to perform this normalization after alignment, so the phonemes can be aligned. Currently just ignores numbers.
- If setting `--vad_filter False`, then whisperx assumes the initial whisper timestamps are accurate to some degree (within margin of 2 seconds, adjust if needed -- bigger margins more prone to alignment errors)
- Overlapping speech is not handled particularly well by whisper nor whisperx
- Diariazation is far from perfect.
<h2 align="left" id="contribute">Contribute 🧑‍🏫</h2>
If you are multilingual, a major way you can contribute to this project is to find phoneme models on huggingface (or train your own) and test them on speech for the target language. If the results look good send a merge request and some examples showing its success.
The next major upgrade we are working on is whisper with speaker diarization, so if you have any experience on this please share.
<h2 align="left" id="coming-soon">Coming Soon 🗓</h2>
* [x] Multilingual init
* [x] Subtitle .ass output
* [x] Automatic align model selection based on language detection
* [x] Python usage
* [x] Character level timestamps
* [x] Incorporating speaker diarization
* [x] Model flush, for low gpu mem resources
* [x] Faster-whisper backend
* [ ] Add benchmarking code (TEDLIUM for spd/WER & word segmentation)
* [ ] Allow silero-vad as alternative VAD option
* [ ] Add max-line etc. see (openai's whisper utils.py)
* [ ] Improve diarization (word level). *Harder than first thought...*
<h2 align="left" id="contact">Contact/Support 📇</h2>
Contact maxhbain@gmail.com for queries and licensing / early access to a model API with batched inference (transcribe 1hr audio in under 1min).
<a href="https://www.buymeacoffee.com/maxhbain" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy Me A Coffee" height="41" width="174"></a>
<h2 align="left" id="acks">Acknowledgements 🙏</h2>
This work, and my PhD, is supported by the [VGG (Visual Geometry Group)](https://www.robots.ox.ac.uk/~vgg/) and the University of Oxford.
Of course, this is builds on [openAI's whisper](https://github.com/openai/whisper).
And borrows important alignment code from [PyTorch tutorial on forced alignment](https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html)
Valuable VAD & Diarization Models from (pyannote.audio)[https://github.com/pyannote/pyannote-audio]
Great backend from (faster-whisper)[https://github.com/guillaumekln/faster-whisper] and (CTranslate2)[https://github.com/OpenNMT/CTranslate2]
<h2 align="left" id="cite">Citation</h2>
If you use this in your research, please cite the paper:
```bibtex
@article{bain2022whisperx,
title={WhisperX: Time-Accurate Speech Transcription of Long-Form Audio},
author={Bain, Max and Huh, Jaesung and Han, Tengda and Zisserman, Andrew},
journal={arXiv preprint, arXiv:2303.00747},
year={2023}
}
```