4 Commits
v3.4.0 ... main

Author SHA1 Message Date
f4261f34e9 Remove unused code in Vad class 2025-07-01 09:06:04 +02:00
429658d4cc chore: bump version to 3.4.2 2025-06-27 07:18:39 +00:00
e0833da5dc Fix: Ensure integer tensor indexing in get_wildcard_emission() 2025-06-27 09:17:44 +02:00
ffedc5cdf0 fix: speaker embedding bug (#1178)
* fix: improve handling of speaker embeddings in transcribe_task

* chore: bump version to 3.4.1
2025-06-25 13:55:20 +02:00
5 changed files with 11 additions and 24 deletions

View File

@ -2,7 +2,7 @@
urls = { repository = "https://github.com/m-bain/whisperx" }
authors = [{ name = "Max Bain" }]
name = "whisperx"
version = "3.4.0"
version = "3.4.2"
description = "Time-Accurate Automatic Speech Recognition using Whisper."
readme = "README.md"
requires-python = ">=3.9, <3.13"

2
uv.lock generated
View File

@ -2788,7 +2788,7 @@ wheels = [
[[package]]
name = "whisperx"
version = "3.4.0"
version = "3.4.2"
source = { editable = "." }
dependencies = [
{ name = "ctranslate2" },

View File

@ -424,7 +424,7 @@ def get_wildcard_emission(frame_emission, tokens, blank_id):
wildcard_mask = (tokens == -1)
# Get scores for non-wildcard positions
regular_scores = frame_emission[tokens.clamp(min=0)] # clamp to avoid -1 index
regular_scores = frame_emission[tokens.clamp(min=0).long()] # clamp to avoid -1 index
# Create a mask and compute the maximum value without modifying frame_emission
max_valid_score = frame_emission.clone() # Create a copy

View File

@ -213,12 +213,19 @@ def transcribe_task(args: dict, parser: argparse.ArgumentParser):
results = []
diarize_model = DiarizationPipeline(model_name=diarize_model_name, use_auth_token=hf_token, device=device)
for result, input_audio_path in tmp_results:
diarize_segments, speaker_embeddings = diarize_model(
diarize_result = diarize_model(
input_audio_path,
min_speakers=min_speakers,
max_speakers=max_speakers,
return_embeddings=return_speaker_embeddings
)
if return_speaker_embeddings:
diarize_segments, speaker_embeddings = diarize_result
else:
diarize_segments = diarize_result
speaker_embeddings = None
result = assign_word_speakers(diarize_segments, result, speaker_embeddings)
results.append((result, input_audio_path))
# >> Write

View File

@ -52,23 +52,3 @@ class Vad:
return merged_segments
# Unused function
@staticmethod
def merge_vad(vad_arr, pad_onset=0.0, pad_offset=0.0, min_duration_off=0.0, min_duration_on=0.0):
active = Annotation()
for k, vad_t in enumerate(vad_arr):
region = Segment(vad_t[0] - pad_onset, vad_t[1] + pad_offset)
active[region, k] = 1
if pad_offset > 0.0 or pad_onset > 0.0 or min_duration_off > 0.0:
active = active.support(collar=min_duration_off)
# remove tracks shorter than min_duration_on
if min_duration_on > 0:
for segment, track in list(active.itertracks()):
if segment.duration < min_duration_on:
del active[segment, track]
active = active.for_json()
active_segs = pd.DataFrame([x['segment'] for x in active['content']])
return active_segs