mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
Compare commits
7 Commits
v3.3.4
...
1843f3553a
Author | SHA1 | Date | |
---|---|---|---|
1843f3553a | |||
d700b56c9c | |||
b343241253 | |||
6fe0a8784a | |||
5012650d0f | |||
108bd0c400 | |||
c72c627d10 |
3
.github/workflows/build-and-release.yml
vendored
3
.github/workflows/build-and-release.yml
vendored
@ -17,6 +17,9 @@ jobs:
|
||||
version: "0.5.14"
|
||||
python-version: "3.9"
|
||||
|
||||
- name: Check if lockfile is up to date
|
||||
run: uv lock --check
|
||||
|
||||
- name: Build package
|
||||
run: uv build
|
||||
|
||||
|
3
.github/workflows/python-compatibility.yml
vendored
3
.github/workflows/python-compatibility.yml
vendored
@ -23,6 +23,9 @@ jobs:
|
||||
version: "0.5.14"
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Check if lockfile is up to date
|
||||
run: uv lock --check
|
||||
|
||||
- name: Install the project
|
||||
run: uv sync --all-extras
|
||||
|
||||
|
23
README.md
23
README.md
@ -97,6 +97,25 @@ uv sync --all-extras --dev
|
||||
|
||||
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
|
||||
|
||||
### Common Issues & Troubleshooting 🔧
|
||||
|
||||
#### libcudnn Dependencies (GPU Users)
|
||||
|
||||
If you're using WhisperX with GPU support and encounter errors like:
|
||||
|
||||
- `Could not load library libcudnn_ops_infer.so.8`
|
||||
- `Unable to load any of {libcudnn_cnn.so.9.1.0, libcudnn_cnn.so.9.1, libcudnn_cnn.so.9, libcudnn_cnn.so}`
|
||||
- `libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory`
|
||||
|
||||
This means your system is missing the CUDA Deep Neural Network library (cuDNN). This library is needed for GPU acceleration but isn't always installed by default.
|
||||
|
||||
**Install cuDNN (example for apt based systems):**
|
||||
|
||||
```bash
|
||||
sudo apt update
|
||||
sudo apt install libcudnn8 libcudnn8-dev -y
|
||||
```
|
||||
|
||||
### Speaker Diarization
|
||||
|
||||
To **enable Speaker Diarization**, include your Hugging Face access token (read) that you can generate from [Here](https://huggingface.co/settings/tokens) after the `--hf_token` argument and accept the user agreement for the following models: [Segmentation](https://huggingface.co/pyannote/segmentation-3.0) and [Speaker-Diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) (if you choose to use Speaker-Diarization 2.x, follow requirements [here](https://huggingface.co/pyannote/speaker-diarization) instead.)
|
||||
@ -170,7 +189,7 @@ result = model.transcribe(audio, batch_size=batch_size)
|
||||
print(result["segments"]) # before alignment
|
||||
|
||||
# delete model if low on GPU resources
|
||||
# import gc; gc.collect(); torch.cuda.empty_cache(); del model
|
||||
# import gc; import torch; gc.collect(); torch.cuda.empty_cache(); del model
|
||||
|
||||
# 2. Align whisper output
|
||||
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
||||
@ -179,7 +198,7 @@ result = whisperx.align(result["segments"], model_a, metadata, audio, device, re
|
||||
print(result["segments"]) # after alignment
|
||||
|
||||
# delete model if low on GPU resources
|
||||
# import gc; gc.collect(); torch.cuda.empty_cache(); del model_a
|
||||
# import gc; import torch; gc.collect(); torch.cuda.empty_cache(); del model_a
|
||||
|
||||
# 3. Assign speaker labels
|
||||
diarize_model = whisperx.diarize.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
|
||||
|
2
uv.lock
generated
2
uv.lock
generated
@ -2787,7 +2787,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "whisperx"
|
||||
version = "3.3.3"
|
||||
version = "3.3.4"
|
||||
source = { editable = "." }
|
||||
dependencies = [
|
||||
{ name = "ctranslate2" },
|
||||
|
@ -43,6 +43,7 @@ def cli():
|
||||
parser.add_argument("--diarize", action="store_true", help="Apply diarization to assign speaker labels to each segment/word")
|
||||
parser.add_argument("--min_speakers", default=None, type=int, help="Minimum number of speakers to in audio file")
|
||||
parser.add_argument("--max_speakers", default=None, type=int, help="Maximum number of speakers to in audio file")
|
||||
parser.add_argument("--diarize_model", default="pyannote/speaker-diarization-3.1", type=str, help="Name of the speaker diarization model to use")
|
||||
|
||||
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
|
||||
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
|
||||
|
@ -5,7 +5,7 @@ C. Max Bain
|
||||
import math
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Iterable, Optional, Union, List
|
||||
from typing import Iterable, Union, List, Callable, Optional
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -120,6 +120,7 @@ def align(
|
||||
return_char_alignments: bool = False,
|
||||
print_progress: bool = False,
|
||||
combined_progress: bool = False,
|
||||
on_progress: Callable[[int, int], None] = None
|
||||
) -> AlignedTranscriptionResult:
|
||||
"""
|
||||
Align phoneme recognition predictions to known transcription.
|
||||
@ -148,6 +149,9 @@ def align(
|
||||
base_progress = ((sdx + 1) / total_segments) * 100
|
||||
percent_complete = (50 + base_progress / 2) if combined_progress else base_progress
|
||||
print(f"Progress: {percent_complete:.2f}%...")
|
||||
|
||||
if on_progress:
|
||||
on_progress(sdx + 1, total_segments)
|
||||
|
||||
num_leading = len(segment["text"]) - len(segment["text"].lstrip())
|
||||
num_trailing = len(segment["text"]) - len(segment["text"].rstrip())
|
||||
|
@ -1,6 +1,8 @@
|
||||
import os
|
||||
from typing import List, Optional, Union
|
||||
from dataclasses import replace
|
||||
import warnings
|
||||
from typing import List, Union, Optional, NamedTuple, Callable
|
||||
from enum import Enum
|
||||
|
||||
import ctranslate2
|
||||
import faster_whisper
|
||||
@ -103,6 +105,12 @@ class FasterWhisperPipeline(Pipeline):
|
||||
# - add support for timestamp mode
|
||||
# - add support for custom inference kwargs
|
||||
|
||||
class TranscriptionState(Enum):
|
||||
LOADING_AUDIO = "loading_audio"
|
||||
GENERATING_VAD_SEGMENTS = "generating_vad_segments"
|
||||
TRANSCRIBING = "transcribing"
|
||||
FINISHED = "finished"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: WhisperModel,
|
||||
@ -197,8 +205,12 @@ class FasterWhisperPipeline(Pipeline):
|
||||
print_progress=False,
|
||||
combined_progress=False,
|
||||
verbose=False,
|
||||
on_progress: Callable[[TranscriptionState, Optional[int], Optional[int]], None] = None,
|
||||
) -> TranscriptionResult:
|
||||
if isinstance(audio, str):
|
||||
if on_progress:
|
||||
on_progress(self.__class__.TranscriptionState.LOADING_AUDIO)
|
||||
|
||||
audio = load_audio(audio)
|
||||
|
||||
def data(audio, segments):
|
||||
@ -216,6 +228,8 @@ class FasterWhisperPipeline(Pipeline):
|
||||
else:
|
||||
waveform = Pyannote.preprocess_audio(audio)
|
||||
merge_chunks = Pyannote.merge_chunks
|
||||
if on_progress:
|
||||
on_progress(self.__class__.TranscriptionState.GENERATING_VAD_SEGMENTS)
|
||||
|
||||
vad_segments = self.vad_model({"waveform": waveform, "sample_rate": SAMPLE_RATE})
|
||||
vad_segments = merge_chunks(
|
||||
@ -255,16 +269,22 @@ class FasterWhisperPipeline(Pipeline):
|
||||
segments: List[SingleSegment] = []
|
||||
batch_size = batch_size or self._batch_size
|
||||
total_segments = len(vad_segments)
|
||||
|
||||
if on_progress:
|
||||
on_progress(self.__class__.TranscriptionState.TRANSCRIBING, 0, total_segments)
|
||||
|
||||
for idx, out in enumerate(self.__call__(data(audio, vad_segments), batch_size=batch_size, num_workers=num_workers)):
|
||||
if print_progress:
|
||||
base_progress = ((idx + 1) / total_segments) * 100
|
||||
percent_complete = base_progress / 2 if combined_progress else base_progress
|
||||
print(f"Progress: {percent_complete:.2f}%...")
|
||||
|
||||
if on_progress:
|
||||
on_progress(self.__class__.TranscriptionState.TRANSCRIBING, idx + 1, total_segments)
|
||||
|
||||
text = out['text']
|
||||
if batch_size in [0, 1, None]:
|
||||
text = text[0]
|
||||
if verbose:
|
||||
print(f"Transcript: [{round(vad_segments[idx]['start'], 3)} --> {round(vad_segments[idx]['end'], 3)}] {text}")
|
||||
segments.append(
|
||||
{
|
||||
"text": text,
|
||||
@ -273,6 +293,9 @@ class FasterWhisperPipeline(Pipeline):
|
||||
}
|
||||
)
|
||||
|
||||
if on_progress:
|
||||
on_progress(self.__class__.TranscriptionState.FINISHED)
|
||||
|
||||
# revert the tokenizer if multilingual inference is enabled
|
||||
if self.preset_language is None:
|
||||
self.tokenizer = None
|
||||
|
@ -11,13 +11,14 @@ from whisperx.types import TranscriptionResult, AlignedTranscriptionResult
|
||||
class DiarizationPipeline:
|
||||
def __init__(
|
||||
self,
|
||||
model_name="pyannote/speaker-diarization-3.1",
|
||||
model_name=None,
|
||||
use_auth_token=None,
|
||||
device: Optional[Union[str, torch.device]] = "cpu",
|
||||
):
|
||||
if isinstance(device, str):
|
||||
device = torch.device(device)
|
||||
self.model = Pipeline.from_pretrained(model_name, use_auth_token=use_auth_token).to(device)
|
||||
model_config = model_name or "pyannote/speaker-diarization-3.1"
|
||||
self.model = Pipeline.from_pretrained(model_config, use_auth_token=use_auth_token).to(device)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
|
@ -57,6 +57,7 @@ def transcribe_task(args: dict, parser: argparse.ArgumentParser):
|
||||
diarize: bool = args.pop("diarize")
|
||||
min_speakers: int = args.pop("min_speakers")
|
||||
max_speakers: int = args.pop("max_speakers")
|
||||
diarize_model_name: str = args.pop("diarize_model")
|
||||
print_progress: bool = args.pop("print_progress")
|
||||
|
||||
if args["language"] is not None:
|
||||
@ -204,8 +205,9 @@ def transcribe_task(args: dict, parser: argparse.ArgumentParser):
|
||||
)
|
||||
tmp_results = results
|
||||
print(">>Performing diarization...")
|
||||
print(">>Using model:", diarize_model_name)
|
||||
results = []
|
||||
diarize_model = DiarizationPipeline(use_auth_token=hf_token, device=device)
|
||||
diarize_model = DiarizationPipeline(model_name=diarize_model_name, use_auth_token=hf_token, device=device)
|
||||
for result, input_audio_path in tmp_results:
|
||||
diarize_segments = diarize_model(
|
||||
input_audio_path, min_speakers=min_speakers, max_speakers=max_speakers
|
||||
|
Reference in New Issue
Block a user