mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
Compare commits
11 Commits
Author | SHA1 | Date | |
---|---|---|---|
73db39703e | |||
db1750fa48 | |||
734084cdf6 | |||
9395b0de18 | |||
d57f9dc54c | |||
a90bd1ce3f | |||
10b05fc43f | |||
26d9b46888 | |||
9a8967f27e | |||
0f7f9f9f83 | |||
c60594fa3b |
2
.github/workflows/build-and-release.yml
vendored
2
.github/workflows/build-and-release.yml
vendored
@ -10,6 +10,8 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.ref_name }}
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
|
35
.github/workflows/tmp.yml
vendored
Normal file
35
.github/workflows/tmp.yml
vendored
Normal file
@ -0,0 +1,35 @@
|
||||
name: Python Compatibility Test (PyPi)
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [main]
|
||||
pull_request:
|
||||
branches: [main]
|
||||
workflow_dispatch: # Allows manual triggering from GitHub UI
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install package
|
||||
run: |
|
||||
pip install whisperx
|
||||
|
||||
- name: Print packages
|
||||
run: |
|
||||
pip list
|
||||
|
||||
- name: Test import
|
||||
run: |
|
||||
python -c "import whisperx; print('Successfully imported whisperx')"
|
@ -1,7 +1,7 @@
|
||||
torch>=2
|
||||
torchaudio>=2
|
||||
faster-whisper==1.1.0
|
||||
ctranslate2<4.5.0
|
||||
ctranslate2>=4.5.0
|
||||
transformers
|
||||
pandas
|
||||
setuptools>=65
|
||||
|
2
setup.py
2
setup.py
@ -9,7 +9,7 @@ with open("README.md", "r", encoding="utf-8") as f:
|
||||
setup(
|
||||
name="whisperx",
|
||||
py_modules=["whisperx"],
|
||||
version="3.3.0",
|
||||
version="3.3.2",
|
||||
description="Time-Accurate Automatic Speech Recognition using Whisper.",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
|
@ -1,5 +1,5 @@
|
||||
import math
|
||||
from conjunctions import get_conjunctions, get_comma
|
||||
from .conjunctions import get_conjunctions, get_comma
|
||||
from typing import TextIO
|
||||
|
||||
def normal_round(n):
|
||||
|
@ -3,7 +3,7 @@ Forced Alignment with Whisper
|
||||
C. Max Bain
|
||||
"""
|
||||
from dataclasses import dataclass
|
||||
from typing import Iterable, Union, List
|
||||
from typing import Iterable, Optional, Union, List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -65,7 +65,7 @@ DEFAULT_ALIGN_MODELS_HF = {
|
||||
}
|
||||
|
||||
|
||||
def load_align_model(language_code, device, model_name=None, model_dir=None):
|
||||
def load_align_model(language_code: str, device: str, model_name: Optional[str] = None, model_dir=None):
|
||||
if model_name is None:
|
||||
# use default model
|
||||
if language_code in DEFAULT_ALIGN_MODELS_TORCH:
|
||||
|
143
whisperx/asr.py
143
whisperx/asr.py
@ -1,17 +1,21 @@
|
||||
import os
|
||||
import warnings
|
||||
from typing import List, Union, Optional, NamedTuple
|
||||
from typing import List, NamedTuple, Optional, Union
|
||||
from dataclasses import replace
|
||||
|
||||
import ctranslate2
|
||||
import faster_whisper
|
||||
import numpy as np
|
||||
import torch
|
||||
from faster_whisper.tokenizer import Tokenizer
|
||||
from faster_whisper.transcribe import TranscriptionOptions, get_ctranslate2_storage
|
||||
from transformers import Pipeline
|
||||
from transformers.pipelines.pt_utils import PipelineIterator
|
||||
|
||||
from .audio import N_SAMPLES, SAMPLE_RATE, load_audio, log_mel_spectrogram
|
||||
from .vad import load_vad_model, merge_chunks
|
||||
from .types import TranscriptionResult, SingleSegment
|
||||
from .types import SingleSegment, TranscriptionResult
|
||||
from .vad import VoiceActivitySegmentation, load_vad_model, merge_chunks
|
||||
|
||||
|
||||
def find_numeral_symbol_tokens(tokenizer):
|
||||
numeral_symbol_tokens = []
|
||||
@ -28,7 +32,13 @@ class WhisperModel(faster_whisper.WhisperModel):
|
||||
Currently only works in non-timestamp mode and fixed prompt for all samples in batch.
|
||||
'''
|
||||
|
||||
def generate_segment_batched(self, features: np.ndarray, tokenizer: faster_whisper.tokenizer.Tokenizer, options: faster_whisper.transcribe.TranscriptionOptions, encoder_output = None):
|
||||
def generate_segment_batched(
|
||||
self,
|
||||
features: np.ndarray,
|
||||
tokenizer: Tokenizer,
|
||||
options: TranscriptionOptions,
|
||||
encoder_output=None,
|
||||
):
|
||||
batch_size = features.shape[0]
|
||||
all_tokens = []
|
||||
prompt_reset_since = 0
|
||||
@ -81,7 +91,7 @@ class WhisperModel(faster_whisper.WhisperModel):
|
||||
# unsqueeze if batch size = 1
|
||||
if len(features.shape) == 2:
|
||||
features = np.expand_dims(features, 0)
|
||||
features = faster_whisper.transcribe.get_ctranslate2_storage(features)
|
||||
features = get_ctranslate2_storage(features)
|
||||
|
||||
return self.model.encode(features, to_cpu=to_cpu)
|
||||
|
||||
@ -94,17 +104,17 @@ class FasterWhisperPipeline(Pipeline):
|
||||
# - add support for custom inference kwargs
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
vad,
|
||||
vad_params: dict,
|
||||
options : NamedTuple,
|
||||
tokenizer=None,
|
||||
device: Union[int, str, "torch.device"] = -1,
|
||||
framework = "pt",
|
||||
language : Optional[str] = None,
|
||||
suppress_numerals: bool = False,
|
||||
**kwargs
|
||||
self,
|
||||
model: WhisperModel,
|
||||
vad: VoiceActivitySegmentation,
|
||||
vad_params: dict,
|
||||
options: TranscriptionOptions,
|
||||
tokenizer: Optional[Tokenizer] = None,
|
||||
device: Union[int, str, "torch.device"] = -1,
|
||||
framework="pt",
|
||||
language: Optional[str] = None,
|
||||
suppress_numerals: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
@ -156,7 +166,13 @@ class FasterWhisperPipeline(Pipeline):
|
||||
return model_outputs
|
||||
|
||||
def get_iterator(
|
||||
self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
|
||||
self,
|
||||
inputs,
|
||||
num_workers: int,
|
||||
batch_size: int,
|
||||
preprocess_params: dict,
|
||||
forward_params: dict,
|
||||
postprocess_params: dict,
|
||||
):
|
||||
dataset = PipelineIterator(inputs, self.preprocess, preprocess_params)
|
||||
if "TOKENIZERS_PARALLELISM" not in os.environ:
|
||||
@ -171,7 +187,16 @@ class FasterWhisperPipeline(Pipeline):
|
||||
return final_iterator
|
||||
|
||||
def transcribe(
|
||||
self, audio: Union[str, np.ndarray], batch_size=None, num_workers=0, language=None, task=None, chunk_size=30, print_progress = False, combined_progress=False, verbose=False
|
||||
self,
|
||||
audio: Union[str, np.ndarray],
|
||||
batch_size: Optional[int] = None,
|
||||
num_workers=0,
|
||||
language: Optional[str] = None,
|
||||
task: Optional[str] = None,
|
||||
chunk_size=30,
|
||||
print_progress=False,
|
||||
combined_progress=False,
|
||||
verbose=False,
|
||||
) -> TranscriptionResult:
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
@ -193,24 +218,30 @@ class FasterWhisperPipeline(Pipeline):
|
||||
if self.tokenizer is None:
|
||||
language = language or self.detect_language(audio)
|
||||
task = task or "transcribe"
|
||||
self.tokenizer = faster_whisper.tokenizer.Tokenizer(self.model.hf_tokenizer,
|
||||
self.model.model.is_multilingual, task=task,
|
||||
language=language)
|
||||
self.tokenizer = Tokenizer(
|
||||
self.model.hf_tokenizer,
|
||||
self.model.model.is_multilingual,
|
||||
task=task,
|
||||
language=language,
|
||||
)
|
||||
else:
|
||||
language = language or self.tokenizer.language_code
|
||||
task = task or self.tokenizer.task
|
||||
if task != self.tokenizer.task or language != self.tokenizer.language_code:
|
||||
self.tokenizer = faster_whisper.tokenizer.Tokenizer(self.model.hf_tokenizer,
|
||||
self.model.model.is_multilingual, task=task,
|
||||
language=language)
|
||||
|
||||
self.tokenizer = Tokenizer(
|
||||
self.model.hf_tokenizer,
|
||||
self.model.model.is_multilingual,
|
||||
task=task,
|
||||
language=language,
|
||||
)
|
||||
|
||||
if self.suppress_numerals:
|
||||
previous_suppress_tokens = self.options.suppress_tokens
|
||||
numeral_symbol_tokens = find_numeral_symbol_tokens(self.tokenizer)
|
||||
print(f"Suppressing numeral and symbol tokens")
|
||||
new_suppressed_tokens = numeral_symbol_tokens + self.options.suppress_tokens
|
||||
new_suppressed_tokens = list(set(new_suppressed_tokens))
|
||||
self.options = self.options._replace(suppress_tokens=new_suppressed_tokens)
|
||||
self.options = replace(self.options, suppress_tokens=new_suppressed_tokens)
|
||||
|
||||
segments: List[SingleSegment] = []
|
||||
batch_size = batch_size or self._batch_size
|
||||
@ -239,12 +270,11 @@ class FasterWhisperPipeline(Pipeline):
|
||||
|
||||
# revert suppressed tokens if suppress_numerals is enabled
|
||||
if self.suppress_numerals:
|
||||
self.options = self.options._replace(suppress_tokens=previous_suppress_tokens)
|
||||
self.options = replace(self.options, suppress_tokens=previous_suppress_tokens)
|
||||
|
||||
return {"segments": segments, "language": language}
|
||||
|
||||
|
||||
def detect_language(self, audio: np.ndarray):
|
||||
def detect_language(self, audio: np.ndarray) -> str:
|
||||
if audio.shape[0] < N_SAMPLES:
|
||||
print("Warning: audio is shorter than 30s, language detection may be inaccurate.")
|
||||
model_n_mels = self.model.feat_kwargs.get("feature_size")
|
||||
@ -258,33 +288,36 @@ class FasterWhisperPipeline(Pipeline):
|
||||
print(f"Detected language: {language} ({language_probability:.2f}) in first 30s of audio...")
|
||||
return language
|
||||
|
||||
def load_model(whisper_arch,
|
||||
device,
|
||||
device_index=0,
|
||||
compute_type="float16",
|
||||
asr_options=None,
|
||||
language : Optional[str] = None,
|
||||
vad_model=None,
|
||||
vad_options=None,
|
||||
model : Optional[WhisperModel] = None,
|
||||
task="transcribe",
|
||||
download_root=None,
|
||||
local_files_only=False,
|
||||
threads=4):
|
||||
'''Load a Whisper model for inference.
|
||||
|
||||
def load_model(
|
||||
whisper_arch: str,
|
||||
device: str,
|
||||
device_index=0,
|
||||
compute_type="float16",
|
||||
asr_options: Optional[dict] = None,
|
||||
language: Optional[str] = None,
|
||||
vad_model: Optional[VoiceActivitySegmentation] = None,
|
||||
vad_options: Optional[dict] = None,
|
||||
model: Optional[WhisperModel] = None,
|
||||
task="transcribe",
|
||||
download_root: Optional[str] = None,
|
||||
local_files_only=False,
|
||||
threads=4,
|
||||
) -> FasterWhisperPipeline:
|
||||
"""Load a Whisper model for inference.
|
||||
Args:
|
||||
whisper_arch: str - The name of the Whisper model to load.
|
||||
device: str - The device to load the model on.
|
||||
compute_type: str - The compute type to use for the model.
|
||||
options: dict - A dictionary of options to use for the model.
|
||||
language: str - The language of the model. (use English for now)
|
||||
model: Optional[WhisperModel] - The WhisperModel instance to use.
|
||||
download_root: Optional[str] - The root directory to download the model to.
|
||||
local_files_only: bool - If `True`, avoid downloading the file and return the path to the local cached file if it exists.
|
||||
threads: int - The number of cpu threads to use per worker, e.g. will be multiplied by num workers.
|
||||
whisper_arch - The name of the Whisper model to load.
|
||||
device - The device to load the model on.
|
||||
compute_type - The compute type to use for the model.
|
||||
options - A dictionary of options to use for the model.
|
||||
language - The language of the model. (use English for now)
|
||||
model - The WhisperModel instance to use.
|
||||
download_root - The root directory to download the model to.
|
||||
local_files_only - If `True`, avoid downloading the file and return the path to the local cached file if it exists.
|
||||
threads - The number of cpu threads to use per worker, e.g. will be multiplied by num workers.
|
||||
Returns:
|
||||
A Whisper pipeline.
|
||||
'''
|
||||
"""
|
||||
|
||||
if whisper_arch.endswith(".en"):
|
||||
language = "en"
|
||||
@ -297,7 +330,7 @@ def load_model(whisper_arch,
|
||||
local_files_only=local_files_only,
|
||||
cpu_threads=threads)
|
||||
if language is not None:
|
||||
tokenizer = faster_whisper.tokenizer.Tokenizer(model.hf_tokenizer, model.model.is_multilingual, task=task, language=language)
|
||||
tokenizer = Tokenizer(model.hf_tokenizer, model.model.is_multilingual, task=task, language=language)
|
||||
else:
|
||||
print("No language specified, language will be first be detected for each audio file (increases inference time).")
|
||||
tokenizer = None
|
||||
@ -338,7 +371,7 @@ def load_model(whisper_arch,
|
||||
suppress_numerals = default_asr_options["suppress_numerals"]
|
||||
del default_asr_options["suppress_numerals"]
|
||||
|
||||
default_asr_options = faster_whisper.transcribe.TranscriptionOptions(**default_asr_options)
|
||||
default_asr_options = TranscriptionOptions(**default_asr_options)
|
||||
|
||||
default_vad_options = {
|
||||
"vad_onset": 0.500,
|
||||
|
@ -22,7 +22,7 @@ FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
||||
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
||||
|
||||
|
||||
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||
def load_audio(file: str, sr: int = SAMPLE_RATE) -> np.ndarray:
|
||||
"""
|
||||
Open an audio file and read as mono waveform, resampling as necessary
|
||||
|
||||
|
@ -1,5 +1,8 @@
|
||||
# conjunctions.py
|
||||
|
||||
from typing import Set
|
||||
|
||||
|
||||
conjunctions_by_language = {
|
||||
'en': {'and', 'whether', 'or', 'as', 'but', 'so', 'for', 'nor', 'which', 'yet', 'although', 'since', 'unless', 'when', 'while', 'because', 'if', 'how', 'that', 'than', 'who', 'where', 'what', 'near', 'before', 'after', 'across', 'through', 'until', 'once', 'whereas', 'even', 'both', 'either', 'neither', 'though'},
|
||||
'fr': {'et', 'ou', 'mais', 'parce', 'bien', 'pendant', 'quand', 'où', 'comme', 'si', 'que', 'avant', 'après', 'aussitôt', 'jusqu’à', 'à', 'malgré', 'donc', 'tant', 'puisque', 'ni', 'soit', 'bien', 'encore', 'dès', 'lorsque'},
|
||||
@ -36,8 +39,9 @@ commas_by_language = {
|
||||
'ur': '،'
|
||||
}
|
||||
|
||||
def get_conjunctions(lang_code):
|
||||
def get_conjunctions(lang_code: str) -> Set[str]:
|
||||
return conjunctions_by_language.get(lang_code, set())
|
||||
|
||||
def get_comma(lang_code):
|
||||
return commas_by_language.get(lang_code, ',')
|
||||
|
||||
def get_comma(lang_code: str) -> str:
|
||||
return commas_by_language.get(lang_code, ",")
|
||||
|
@ -5,6 +5,7 @@ from typing import Optional, Union
|
||||
import torch
|
||||
|
||||
from .audio import load_audio, SAMPLE_RATE
|
||||
from .types import TranscriptionResult, AlignedTranscriptionResult
|
||||
|
||||
|
||||
class DiarizationPipeline:
|
||||
@ -18,7 +19,13 @@ class DiarizationPipeline:
|
||||
device = torch.device(device)
|
||||
self.model = Pipeline.from_pretrained(model_name, use_auth_token=use_auth_token).to(device)
|
||||
|
||||
def __call__(self, audio: Union[str, np.ndarray], num_speakers=None, min_speakers=None, max_speakers=None):
|
||||
def __call__(
|
||||
self,
|
||||
audio: Union[str, np.ndarray],
|
||||
num_speakers: Optional[int] = None,
|
||||
min_speakers: Optional[int] = None,
|
||||
max_speakers: Optional[int] = None,
|
||||
):
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
audio_data = {
|
||||
@ -32,7 +39,11 @@ class DiarizationPipeline:
|
||||
return diarize_df
|
||||
|
||||
|
||||
def assign_word_speakers(diarize_df, transcript_result, fill_nearest=False):
|
||||
def assign_word_speakers(
|
||||
diarize_df: pd.DataFrame,
|
||||
transcript_result: Union[AlignedTranscriptionResult, TranscriptionResult],
|
||||
fill_nearest=False,
|
||||
) -> dict:
|
||||
transcript_segments = transcript_result["segments"]
|
||||
for seg in transcript_segments:
|
||||
# assign speaker to segment (if any)
|
||||
|
@ -10,8 +10,15 @@ from .alignment import align, load_align_model
|
||||
from .asr import load_model
|
||||
from .audio import load_audio
|
||||
from .diarize import DiarizationPipeline, assign_word_speakers
|
||||
from .utils import (LANGUAGES, TO_LANGUAGE_CODE, get_writer, optional_float,
|
||||
optional_int, str2bool)
|
||||
from .types import AlignedTranscriptionResult, TranscriptionResult
|
||||
from .utils import (
|
||||
LANGUAGES,
|
||||
TO_LANGUAGE_CODE,
|
||||
get_writer,
|
||||
optional_float,
|
||||
optional_int,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def cli():
|
||||
@ -95,7 +102,7 @@ def cli():
|
||||
align_model: str = args.pop("align_model")
|
||||
interpolate_method: str = args.pop("interpolate_method")
|
||||
no_align: bool = args.pop("no_align")
|
||||
task : str = args.pop("task")
|
||||
task: str = args.pop("task")
|
||||
if task == "translate":
|
||||
# translation cannot be aligned
|
||||
no_align = True
|
||||
@ -174,7 +181,13 @@ def cli():
|
||||
audio = load_audio(audio_path)
|
||||
# >> VAD & ASR
|
||||
print(">>Performing transcription...")
|
||||
result = model.transcribe(audio, batch_size=batch_size, chunk_size=chunk_size, print_progress=print_progress, verbose=verbose)
|
||||
result: TranscriptionResult = model.transcribe(
|
||||
audio,
|
||||
batch_size=batch_size,
|
||||
chunk_size=chunk_size,
|
||||
print_progress=print_progress,
|
||||
verbose=verbose,
|
||||
)
|
||||
results.append((result, audio_path))
|
||||
|
||||
# Unload Whisper and VAD
|
||||
@ -201,7 +214,16 @@ def cli():
|
||||
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
|
||||
align_model, align_metadata = load_align_model(result["language"], device)
|
||||
print(">>Performing alignment...")
|
||||
result = align(result["segments"], align_model, align_metadata, input_audio, device, interpolate_method=interpolate_method, return_char_alignments=return_char_alignments, print_progress=print_progress)
|
||||
result: AlignedTranscriptionResult = align(
|
||||
result["segments"],
|
||||
align_model,
|
||||
align_metadata,
|
||||
input_audio,
|
||||
device,
|
||||
interpolate_method=interpolate_method,
|
||||
return_char_alignments=return_char_alignments,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
|
||||
results.append((result, audio_path))
|
||||
|
||||
|
@ -214,7 +214,12 @@ class WriteTXT(ResultWriter):
|
||||
|
||||
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||
for segment in result["segments"]:
|
||||
print(segment["text"].strip(), file=file, flush=True)
|
||||
speaker = segment.get("speaker")
|
||||
text = segment["text"].strip()
|
||||
if speaker is not None:
|
||||
print(f"[{speaker}]: {text}", file=file, flush=True)
|
||||
else:
|
||||
print(text, file=file, flush=True)
|
||||
|
||||
|
||||
class SubtitlesWriter(ResultWriter):
|
||||
|
Reference in New Issue
Block a user