15 Commits

Author SHA1 Message Date
f5b40b5366 chore: update version to 3.3.3 in pyproject.toml and uv.lock 2025-05-01 11:08:54 +02:00
ac0c8bd79a feat: add version and Python version arguments to CLI 2025-05-01 11:08:54 +02:00
cd59f21d1a fix: downgrade ctranslate2 dependency version 2025-05-01 11:08:54 +02:00
0aed874589 Remove duplicated item
"lv": "latvian"
2025-04-12 11:08:15 +02:00
f10dbf6ab1 fix: update setuptools configuration to include package discovery for whisperx 2025-03-25 18:49:44 +01:00
a7564c2ad6 docs: update installation instructions 2025-03-25 17:02:41 +01:00
e7712f496e refactor: update import statements to use explicit module paths across multiple files 2025-03-25 16:24:21 +01:00
8e53866704 feat: pass hotwords argument to get_prompt (#1073)
Co-authored-by: Jade Moillic <jade.moillic@radiofrance.com>
2025-03-24 10:47:47 +01:00
3205436d58 Merge pull request #1002 from Barabazs/feat/uv 2025-03-23 12:59:46 +00:00
d2f0e53f71 chore: remove tmp workflow 2025-02-12 08:23:23 +01:00
7489ebf876 feat: update build and release workflow to use uv for package installation and publishing 2025-02-12 08:23:23 +01:00
90256cc481 feat: use uv recommended setup 2025-02-12 08:23:23 +01:00
b41ebd4871 chore: add numpy to deps 2025-02-12 08:23:23 +01:00
63bc1903c1 feat: update Python compatibility workflow to use uv 2025-02-12 08:23:23 +01:00
272714e07d feat: use uv for building package 2025-02-12 08:23:23 +01:00
19 changed files with 3048 additions and 165 deletions

View File

@ -11,25 +11,21 @@ jobs:
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
- name: Install uv
uses: astral-sh/setup-uv@v5
with:
version: "0.5.14"
python-version: "3.9"
- name: Install dependencies
run: |
python -m pip install build
- name: Build wheels
run: python -m build --wheel
- name: Build package
run: uv build
- name: Release to Github
uses: softprops/action-gh-release@v2
with:
files: dist/*
files: dist/*.whl
- name: Publish package to PyPi
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}
run: uv publish
env:
UV_PUBLISH_TOKEN: ${{ secrets.PYPI_API_TOKEN }}

View File

@ -5,7 +5,7 @@ on:
branches: [main]
pull_request:
branches: [main]
workflow_dispatch: # Allows manual triggering from GitHub UI
workflow_dispatch: # Allows manual triggering from GitHub UI
jobs:
test:
@ -17,16 +17,15 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
- name: Install uv
uses: astral-sh/setup-uv@v5
with:
version: "0.5.14"
python-version: ${{ matrix.python-version }}
- name: Install package
run: |
python -m pip install --upgrade pip
pip install .
- name: Install the project
run: uv sync --all-extras
- name: Test import
run: |
python -c "import whisperx; print('Successfully imported whisperx')"
uv run python -c "import whisperx; print('Successfully imported whisperx')"

View File

@ -1,35 +0,0 @@
name: Python Compatibility Test (PyPi)
on:
push:
branches: [main]
pull_request:
branches: [main]
workflow_dispatch: # Allows manual triggering from GitHub UI
jobs:
test:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.9", "3.10", "3.11", "3.12"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install package
run: |
pip install whisperx
- name: Print packages
run: |
pip list
- name: Test import
run: |
python -c "import whisperx; print('Successfully imported whisperx')"

View File

@ -62,54 +62,41 @@ This repository provides fast automatic speech recognition (70x realtime with la
- Paper drop🎓👨🏫! Please see our [ArxiV preprint](https://arxiv.org/abs/2303.00747) for benchmarking and details of WhisperX. We also introduce more efficient batch inference resulting in large-v2 with *60-70x REAL TIME speed.
<h2 align="left" id="setup">Setup ⚙️</h2>
Tested for PyTorch 2.0, Python 3.10 (use other versions at your own risk!)
GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be installed on the system. Please refer to the [CTranslate2 documentation](https://opennmt.net/CTranslate2/installation.html).
### 1. Simple Installation (Recommended)
### 1. Create Python3.10 environment
`conda create --name whisperx python=3.10`
`conda activate whisperx`
### 2. Install PyTorch, e.g. for Linux and Windows CUDA11.8:
`conda install pytorch==2.0.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia`
See other methods [here.](https://pytorch.org/get-started/previous-versions/#v200)
### 3. Install WhisperX
You have several installation options:
#### Option A: Stable Release (recommended)
Install the latest stable version from PyPI:
The easiest way to install WhisperX is through PyPi:
```bash
pip install whisperx
```
#### Option B: Development Version
Install the latest development version directly from GitHub (may be unstable):
Or if using [uvx](https://docs.astral.sh/uv/guides/tools/#running-tools):
```bash
pip install git+https://github.com/m-bain/whisperx.git
uvx whisperx
```
If already installed, update to the most recent commit:
### 2. Advanced Installation Options
These installation methods are for developers or users with specific needs. If you're not sure, stick with the simple installation above.
#### Option A: Install from GitHub
To install directly from the GitHub repository:
```bash
pip install git+https://github.com/m-bain/whisperx.git --upgrade
uvx git+https://github.com/m-bain/whisperX.git
```
#### Option C: Development Mode
If you wish to modify the package, clone and install in editable mode:
#### Option B: Developer Installation
If you want to modify the code or contribute to the project:
```bash
git clone https://github.com/m-bain/whisperX.git
cd whisperX
pip install -e .
uv sync --all-extras --dev
```
> **Note**: The development version may contain experimental features and bugs. Use the stable PyPI release for production environments.
@ -117,12 +104,12 @@ pip install -e .
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
### Speaker Diarization
To **enable Speaker Diarization**, include your Hugging Face access token (read) that you can generate from [Here](https://huggingface.co/settings/tokens) after the `--hf_token` argument and accept the user agreement for the following models: [Segmentation](https://huggingface.co/pyannote/segmentation-3.0) and [Speaker-Diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) (if you choose to use Speaker-Diarization 2.x, follow requirements [here](https://huggingface.co/pyannote/speaker-diarization) instead.)
> **Note**<br>
> As of Oct 11, 2023, there is a known issue regarding slow performance with pyannote/Speaker-Diarization-3.0 in whisperX. It is due to dependency conflicts between faster-whisper and pyannote-audio 3.0.0. Please see [this issue](https://github.com/m-bain/whisperX/issues/499) for more details and potential workarounds.
<h2 align="left" id="example">Usage 💬 (command line)</h2>
### English

36
pyproject.toml Normal file
View File

@ -0,0 +1,36 @@
[project]
urls = { repository = "https://github.com/m-bain/whisperx" }
authors = [{ name = "Max Bain" }]
name = "whisperx"
version = "3.3.3"
description = "Time-Accurate Automatic Speech Recognition using Whisper."
readme = "README.md"
requires-python = ">=3.9, <3.13"
license = { text = "BSD-2-Clause" }
dependencies = [
"ctranslate2<4.5.0",
"faster-whisper>=1.1.1",
"nltk>=3.9.1",
"numpy>=2.0.2",
"onnxruntime>=1.19",
"pandas>=2.2.3",
"pyannote-audio>=3.3.2",
"torch>=2.5.1",
"torchaudio>=2.5.1",
"transformers>=4.48.0",
]
[project.scripts]
whisperx = "whisperx.transcribe:cli"
[build-system]
requires = ["setuptools"]
[tool.setuptools]
include-package-data = true
[tool.setuptools.packages.find]
where = ["."]
include = ["whisperx*"]

View File

@ -1,8 +0,0 @@
torch>=2
torchaudio>=2
faster-whisper==1.1.0
ctranslate2<4.5.0
transformers
pandas
setuptools>=65
nltk

View File

@ -1,33 +0,0 @@
import os
import pkg_resources
from setuptools import find_packages, setup
with open("README.md", "r", encoding="utf-8") as f:
long_description = f.read()
setup(
name="whisperx",
py_modules=["whisperx"],
version="3.3.1",
description="Time-Accurate Automatic Speech Recognition using Whisper.",
long_description=long_description,
long_description_content_type="text/markdown",
python_requires=">=3.9, <3.13",
author="Max Bain",
url="https://github.com/m-bain/whisperx",
license="BSD-2-Clause",
packages=find_packages(exclude=["tests*"]),
install_requires=[
str(r)
for r in pkg_resources.parse_requirements(
open(os.path.join(os.path.dirname(__file__), "requirements.txt"))
)
]
+ [f"pyannote.audio==3.3.2"],
entry_points={
"console_scripts": ["whisperx=whisperx.transcribe:cli"],
},
include_package_data=True,
extras_require={"dev": ["pytest"]},
)

2905
uv.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,5 @@
import math
from .conjunctions import get_conjunctions, get_comma
from typing import TextIO
from whisperx.conjunctions import get_conjunctions, get_comma
def normal_round(n):
if n - math.floor(n) < 0.5:

View File

@ -1,4 +1,7 @@
from .alignment import load_align_model, align
from .audio import load_audio
from .diarize import assign_word_speakers, DiarizationPipeline
from .asr import load_model
from whisperx.alignment import load_align_model as load_align_model, align as align
from whisperx.asr import load_model as load_model
from whisperx.audio import load_audio as load_audio
from whisperx.diarize import (
assign_word_speakers as assign_word_speakers,
DiarizationPipeline as DiarizationPipeline,
)

View File

@ -1,4 +1,4 @@
from .transcribe import cli
from whisperx.transcribe import cli
cli()

View File

@ -13,9 +13,9 @@ import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from .audio import SAMPLE_RATE, load_audio
from .utils import interpolate_nans
from .types import (
from whisperx.audio import SAMPLE_RATE, load_audio
from whisperx.utils import interpolate_nans
from whisperx.types import (
AlignedTranscriptionResult,
SingleSegment,
SingleAlignedSegment,

View File

@ -11,9 +11,10 @@ from faster_whisper.transcribe import TranscriptionOptions, get_ctranslate2_stor
from transformers import Pipeline
from transformers.pipelines.pt_utils import PipelineIterator
from .audio import N_SAMPLES, SAMPLE_RATE, load_audio, log_mel_spectrogram
from .types import SingleSegment, TranscriptionResult
from .vads import Vad, Silero, Pyannote
from whisperx.audio import N_SAMPLES, SAMPLE_RATE, load_audio, log_mel_spectrogram
from whisperx.types import SingleSegment, TranscriptionResult
from whisperx.vads import Vad, Silero, Pyannote
def find_numeral_symbol_tokens(tokenizer):
numeral_symbol_tokens = []
@ -50,6 +51,7 @@ class WhisperModel(faster_whisper.WhisperModel):
previous_tokens,
without_timestamps=options.without_timestamps,
prefix=options.prefix,
hotwords=options.hotwords
)
encoder_output = self.encode(features)

View File

@ -7,7 +7,7 @@ import numpy as np
import torch
import torch.nn.functional as F
from .utils import exact_div
from whisperx.utils import exact_div
# hard-coded audio hyperparameters
SAMPLE_RATE = 16000

View File

@ -4,8 +4,8 @@ from pyannote.audio import Pipeline
from typing import Optional, Union
import torch
from .audio import load_audio, SAMPLE_RATE
from .types import TranscriptionResult, AlignedTranscriptionResult
from whisperx.audio import load_audio, SAMPLE_RATE
from whisperx.types import TranscriptionResult, AlignedTranscriptionResult
class DiarizationPipeline:

View File

@ -1,17 +1,20 @@
import argparse
import gc
import os
import sys
import warnings
import importlib.metadata
import platform
import numpy as np
import torch
from .alignment import align, load_align_model
from .asr import load_model
from .audio import load_audio
from .diarize import DiarizationPipeline, assign_word_speakers
from .types import AlignedTranscriptionResult, TranscriptionResult
from .utils import (
from whisperx.alignment import align, load_align_model
from whisperx.asr import load_model
from whisperx.audio import load_audio
from whisperx.diarize import DiarizationPipeline, assign_word_speakers
from whisperx.types import AlignedTranscriptionResult, TranscriptionResult
from whisperx.utils import (
LANGUAGES,
TO_LANGUAGE_CODE,
get_writer,
@ -85,6 +88,8 @@ def cli():
parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face Access Token to access PyAnnote gated models")
parser.add_argument("--print_progress", type=str2bool, default = False, help = "if True, progress will be printed in transcribe() and align() methods.")
parser.add_argument("--version", "-V", action="version", version=f"%(prog)s {importlib.metadata.version('whisperx')}",help="Show whisperx version information and exit")
parser.add_argument("--python-version", "-P", action="version", version=f"Python {platform.python_version()} ({platform.python_implementation()})",help="Show python version information and exit")
# fmt: on
args = parser.parse_args().__dict__
@ -138,7 +143,9 @@ def cli():
f"{model_name} is an English-only model but received '{args['language']}'; using English instead."
)
args["language"] = "en"
align_language = args["language"] if args["language"] is not None else "en" # default to loading english if not specified
align_language = (
args["language"] if args["language"] is not None else "en"
) # default to loading english if not specified
temperature = args.pop("temperature")
if (increment := args.pop("temperature_increment_on_fallback")) is not None:
@ -174,12 +181,29 @@ def cli():
if args["max_line_count"] and not args["max_line_width"]:
warnings.warn("--max_line_count has no effect without --max_line_width")
writer_args = {arg: args.pop(arg) for arg in word_options}
# Part 1: VAD & ASR Loop
results = []
tmp_results = []
# model = load_model(model_name, device=device, download_root=model_dir)
model = load_model(model_name, device=device, device_index=device_index, download_root=model_dir, compute_type=compute_type, language=args['language'], asr_options=asr_options, vad_method=vad_method, vad_options={"chunk_size":chunk_size, "vad_onset": vad_onset, "vad_offset": vad_offset}, task=task, local_files_only=model_cache_only, threads=faster_whisper_threads)
model = load_model(
model_name,
device=device,
device_index=device_index,
download_root=model_dir,
compute_type=compute_type,
language=args["language"],
asr_options=asr_options,
vad_method=vad_method,
vad_options={
"chunk_size": chunk_size,
"vad_onset": vad_onset,
"vad_offset": vad_offset,
},
task=task,
local_files_only=model_cache_only,
threads=faster_whisper_threads,
)
for audio_path in args.pop("audio"):
audio = load_audio(audio_path)
@ -203,7 +227,9 @@ def cli():
if not no_align:
tmp_results = results
results = []
align_model, align_metadata = load_align_model(align_language, device, model_name=align_model)
align_model, align_metadata = load_align_model(
align_language, device, model_name=align_model
)
for result, audio_path in tmp_results:
# >> Align
if len(tmp_results) > 1:
@ -215,8 +241,12 @@ def cli():
if align_model is not None and len(result["segments"]) > 0:
if result.get("language", "en") != align_metadata["language"]:
# load new language
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
align_model, align_metadata = load_align_model(result["language"], device)
print(
f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language..."
)
align_model, align_metadata = load_align_model(
result["language"], device
)
print(">>Performing alignment...")
result: AlignedTranscriptionResult = align(
result["segments"],
@ -239,13 +269,17 @@ def cli():
# >> Diarize
if diarize:
if hf_token is None:
print("Warning, no --hf_token used, needs to be saved in environment variable, otherwise will throw error loading diarization model...")
print(
"Warning, no --hf_token used, needs to be saved in environment variable, otherwise will throw error loading diarization model..."
)
tmp_results = results
print(">>Performing diarization...")
results = []
diarize_model = DiarizationPipeline(use_auth_token=hf_token, device=device)
for result, input_audio_path in tmp_results:
diarize_segments = diarize_model(input_audio_path, min_speakers=min_speakers, max_speakers=max_speakers)
diarize_segments = diarize_model(
input_audio_path, min_speakers=min_speakers, max_speakers=max_speakers
)
result = assign_word_speakers(diarize_segments, result)
results.append((result, input_audio_path))
# >> Write
@ -253,5 +287,6 @@ def cli():
result["language"] = align_language
writer(result, audio_path, writer_args)
if __name__ == "__main__":
cli()

View File

@ -106,7 +106,6 @@ LANGUAGES = {
"jw": "javanese",
"su": "sundanese",
"yue": "cantonese",
"lv": "latvian",
}
# language code lookup by name, with a few language aliases

View File

@ -1,3 +1,3 @@
from whisperx.vads.pyannote import Pyannote
from whisperx.vads.silero import Silero
from whisperx.vads.vad import Vad
from whisperx.vads.pyannote import Pyannote as Pyannote
from whisperx.vads.silero import Silero as Silero
from whisperx.vads.vad import Vad as Vad

View File

@ -1,6 +1,4 @@
import hashlib
import os
import urllib
from typing import Callable, Text, Union
from typing import Optional
@ -12,11 +10,11 @@ from pyannote.audio.pipelines import VoiceActivityDetection
from pyannote.audio.pipelines.utils import PipelineModel
from pyannote.core import Annotation, SlidingWindowFeature
from pyannote.core import Segment
from tqdm import tqdm
from whisperx.diarize import Segment as SegmentX
from whisperx.vads.vad import Vad
def load_vad_model(device, vad_onset=0.500, vad_offset=0.363, use_auth_token=None, model_fp=None):
model_dir = torch.hub._get_torch_home()