7 Commits

Author SHA1 Message Date
429658d4cc chore: bump version to 3.4.2 2025-06-27 07:18:39 +00:00
e0833da5dc Fix: Ensure integer tensor indexing in get_wildcard_emission() 2025-06-27 09:17:44 +02:00
ffedc5cdf0 fix: speaker embedding bug (#1178)
* fix: improve handling of speaker embeddings in transcribe_task

* chore: bump version to 3.4.1
2025-06-25 13:55:20 +02:00
b93e9b6f57 chore: bump version to 3.4.0 2025-06-24 16:21:23 +02:00
844736e4e4 style: minor code formatting 2025-06-24 15:01:09 +02:00
220fec9aea refactor: update type hints in diarization module (PEP 585) 2025-06-24 15:01:09 +02:00
1631c3040f feat: enhance diarization with optional output of speaker embeddings
- Updated DiarizationPipeline to include a return_embeddings parameter for optional speaker embeddings.
- Modified assign_word_speakers to accept and process speaker embeddings.
- Updated CLI to support --speaker_embeddings flag for JSON output.
- Ensured backward compatibility for existing functionality.
2025-06-24 15:01:09 +02:00
6 changed files with 1636 additions and 1560 deletions

View File

@ -2,7 +2,7 @@
urls = { repository = "https://github.com/m-bain/whisperx" }
authors = [{ name = "Max Bain" }]
name = "whisperx"
version = "3.3.4"
version = "3.4.2"
description = "Time-Accurate Automatic Speech Recognition using Whisper."
readme = "README.md"
requires-python = ">=3.9, <3.13"

3095
uv.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -44,6 +44,7 @@ def cli():
parser.add_argument("--min_speakers", default=None, type=int, help="Minimum number of speakers to in audio file")
parser.add_argument("--max_speakers", default=None, type=int, help="Maximum number of speakers to in audio file")
parser.add_argument("--diarize_model", default="pyannote/speaker-diarization-3.1", type=str, help="Name of the speaker diarization model to use")
parser.add_argument("--speaker_embeddings", action="store_true", help="Include speaker embeddings in JSON output (only works with --diarize)")
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")

View File

@ -424,7 +424,7 @@ def get_wildcard_emission(frame_emission, tokens, blank_id):
wildcard_mask = (tokens == -1)
# Get scores for non-wildcard positions
regular_scores = frame_emission[tokens.clamp(min=0)] # clamp to avoid -1 index
regular_scores = frame_emission[tokens.clamp(min=0).long()] # clamp to avoid -1 index
# Create a mask and compute the maximum value without modifying frame_emission
max_valid_score = frame_emission.clone() # Create a copy

View File

@ -26,25 +26,81 @@ class DiarizationPipeline:
num_speakers: Optional[int] = None,
min_speakers: Optional[int] = None,
max_speakers: Optional[int] = None,
):
return_embeddings: bool = False,
) -> Union[tuple[pd.DataFrame, Optional[dict[str, list[float]]]], pd.DataFrame]:
"""
Perform speaker diarization on audio.
Args:
audio: Path to audio file or audio array
num_speakers: Exact number of speakers (if known)
min_speakers: Minimum number of speakers to detect
max_speakers: Maximum number of speakers to detect
return_embeddings: Whether to return speaker embeddings
Returns:
If return_embeddings is True:
Tuple of (diarization dataframe, speaker embeddings dictionary)
Otherwise:
Just the diarization dataframe
"""
if isinstance(audio, str):
audio = load_audio(audio)
audio_data = {
'waveform': torch.from_numpy(audio[None, :]),
'sample_rate': SAMPLE_RATE
}
segments = self.model(audio_data, num_speakers = num_speakers, min_speakers=min_speakers, max_speakers=max_speakers)
diarize_df = pd.DataFrame(segments.itertracks(yield_label=True), columns=['segment', 'label', 'speaker'])
if return_embeddings:
diarization, embeddings = self.model(
audio_data,
num_speakers=num_speakers,
min_speakers=min_speakers,
max_speakers=max_speakers,
return_embeddings=True,
)
else:
diarization = self.model(
audio_data,
num_speakers=num_speakers,
min_speakers=min_speakers,
max_speakers=max_speakers,
)
embeddings = None
diarize_df = pd.DataFrame(diarization.itertracks(yield_label=True), columns=['segment', 'label', 'speaker'])
diarize_df['start'] = diarize_df['segment'].apply(lambda x: x.start)
diarize_df['end'] = diarize_df['segment'].apply(lambda x: x.end)
return diarize_df
if return_embeddings and embeddings is not None:
speaker_embeddings = {speaker: embeddings[s].tolist() for s, speaker in enumerate(diarization.labels())}
return diarize_df, speaker_embeddings
# For backwards compatibility
if return_embeddings:
return diarize_df, None
else:
return diarize_df
def assign_word_speakers(
diarize_df: pd.DataFrame,
transcript_result: Union[AlignedTranscriptionResult, TranscriptionResult],
fill_nearest=False,
) -> dict:
speaker_embeddings: Optional[dict[str, list[float]]] = None,
fill_nearest: bool = False,
) -> Union[AlignedTranscriptionResult, TranscriptionResult]:
"""
Assign speakers to words and segments in the transcript.
Args:
diarize_df: Diarization dataframe from DiarizationPipeline
transcript_result: Transcription result to augment with speaker labels
speaker_embeddings: Optional dictionary mapping speaker IDs to embedding vectors
fill_nearest: If True, assign speakers even when there's no direct time overlap
Returns:
Updated transcript_result with speaker assignments and optionally embeddings
"""
transcript_segments = transcript_result["segments"]
for seg in transcript_segments:
# assign speaker to segment (if any)
@ -75,8 +131,12 @@ def assign_word_speakers(
# sum over speakers
speaker = dia_tmp.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
word["speaker"] = speaker
return transcript_result
# Add speaker embeddings to the result if provided
if speaker_embeddings is not None:
transcript_result["speaker_embeddings"] = speaker_embeddings
return transcript_result
class Segment:

View File

@ -59,6 +59,10 @@ def transcribe_task(args: dict, parser: argparse.ArgumentParser):
max_speakers: int = args.pop("max_speakers")
diarize_model_name: str = args.pop("diarize_model")
print_progress: bool = args.pop("print_progress")
return_speaker_embeddings: bool = args.pop("speaker_embeddings")
if return_speaker_embeddings and not diarize:
warnings.warn("--speaker_embeddings has no effect without --diarize")
if args["language"] is not None:
args["language"] = args["language"].lower()
@ -209,10 +213,20 @@ def transcribe_task(args: dict, parser: argparse.ArgumentParser):
results = []
diarize_model = DiarizationPipeline(model_name=diarize_model_name, use_auth_token=hf_token, device=device)
for result, input_audio_path in tmp_results:
diarize_segments = diarize_model(
input_audio_path, min_speakers=min_speakers, max_speakers=max_speakers
diarize_result = diarize_model(
input_audio_path,
min_speakers=min_speakers,
max_speakers=max_speakers,
return_embeddings=return_speaker_embeddings
)
result = assign_word_speakers(diarize_segments, result)
if return_speaker_embeddings:
diarize_segments, speaker_embeddings = diarize_result
else:
diarize_segments = diarize_result
speaker_embeddings = None
result = assign_word_speakers(diarize_segments, result, speaker_embeddings)
results.append((result, input_audio_path))
# >> Write
for result, audio_path in results: