.wav conversion, handle audio with no detected speech

This commit is contained in:
Max Bain
2023-03-31 23:02:38 +01:00
parent d0fa028045
commit b9ca701d69
5 changed files with 50 additions and 22 deletions

View File

@ -16,7 +16,7 @@ from whisper.utils import (
from .alignment import load_align_model, align
from .asr import transcribe, transcribe_with_vad
from .diarize import DiarizationPipeline
from .diarize import DiarizationPipeline, assign_word_speakers
from .utils import get_writer
from .vad import load_vad_model
@ -44,7 +44,7 @@ def cli():
parser.add_argument("--no_align", action='store_true', help="Do not perform phoneme alignment")
# vad params
parser.add_argument("--vad_filter", action="store_true", help="Whether to pre-segment audio with VAD, highly recommended! Produces more accurate alignment + timestamp see WhisperX paper https://arxiv.org/abs/2303.00747")
parser.add_argument("--vad_filter", default=True, help="Whether to pre-segment audio with VAD, highly recommended! Produces more accurate alignment + timestamp see WhisperX paper https://arxiv.org/abs/2303.00747")
parser.add_argument("--vad_onset", type=float, default=0.500, help="Onset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected")
parser.add_argument("--vad_offset", type=float, default=0.363, help="Offset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected.")
@ -61,7 +61,7 @@ def cli():
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
parser.add_argument("--condition_on_previous_text", type=str2bool, default=False, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
@ -74,7 +74,7 @@ def cli():
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face Access Token to access PyAnnote gated models")
parser.add_argument("--model_flush", action="store_true", help="Flush memory from each model after use, reduces GPU requirement but slower processing >1 audio file.")
# parser.add_argument("--model_flush", action="store_true", help="Flush memory from each model after use, reduces GPU requirement but slower processing >1 audio file.")
parser.add_argument("--tmp_dir", default=None, help="Temporary directory to write audio file if input if not .wav format (only for VAD).")
# fmt: on
@ -84,9 +84,13 @@ def cli():
output_dir: str = args.pop("output_dir")
output_format: str = args.pop("output_format")
device: str = args.pop("device")
model_flush: bool = args.pop("model_flush")
# model_flush: bool = args.pop("model_flush")
os.makedirs(output_dir, exist_ok=True)
tmp_dir: str = args.pop("tmp_dir")
if tmp_dir is not None:
os.makedirs(tmp_dir, exist_ok=True)
align_model: str = args.pop("align_model")
align_extend: float = args.pop("align_extend")
align_from_prev: bool = args.pop("align_from_prev")
@ -124,6 +128,11 @@ def cli():
align_language = args["language"] if args["language"] is not None else "en" # default to loading english if not specified
align_model, align_metadata = load_align_model(align_language, device, model_name=align_model)
# if model_flush:
# print(">>Model flushing activated... Only loading model after ASR stage")
# del align_model
# align_model = ""
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
if args["language"] is not None:
@ -148,34 +157,36 @@ def cli():
writer = get_writer(output_format, output_dir)
for audio_path in args.pop("audio"):
input_audio_path = audio_path
tfile = None
if vad_model is not None:
if not audio_path.endswith(".wav"):
print("VAD requires .wav format, converting to wav as a tempfile...")
print(">>VAD requires .wav format, converting to wav as a tempfile...")
tfile = tempfile.NamedTemporaryFile(delete=True, suffix=".wav")
ffmpeg.input(audio_path, threads=0).output(tfile.name, ac=1, ar=SAMPLE_RATE).run(cmd=["ffmpeg"])
input_audio_path = tfile.name
print("Performing VAD...")
print(">>Performing VAD...")
result = transcribe_with_vad(model, input_audio_path, vad_model, temperature=temperature, **args)
if tfile is not None:
tfile.close()
else:
print("Performing transcription...")
print(">>Performing transcription...")
result = transcribe(model, input_audio_path, temperature=temperature, **args)
if align_model is not None:
if result["language"] != align_metadata["language"]:
if align_model is not None and len(result["segments"]) > 0:
if result.get("language", "en") != align_metadata["language"]:
# load new language
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
align_model, align_metadata = load_align_model(result["language"], device)
print(">>Performing alignment...")
result = align(result["segments"], align_model, align_metadata, input_audio_path, device,
extend_duration=align_extend, start_from_previous=align_from_prev, interpolate_method=interpolate_method)
# if diarize_model is not None:
# diarize_segments = diarize_model(input_audio_path, min_speakers=min_speakers, max_speakers=max_speakers)
# results_segments, word_segments = assign_word_speakers(diarize_segments, )
if diarize_model is not None:
diarize_segments = diarize_model(input_audio_path, min_speakers=min_speakers, max_speakers=max_speakers)
results_segments, word_segments = assign_word_speakers(diarize_segments)
if tfile is not None:
tfile.close()
writer(result, audio_path)