mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
fallback on whisper alignment failures, update readme
This commit is contained in:
18
README.md
18
README.md
@ -23,7 +23,6 @@
|
|||||||
<a href="#setup">Setup</a> •
|
<a href="#setup">Setup</a> •
|
||||||
<a href="#example">Usage</a> •
|
<a href="#example">Usage</a> •
|
||||||
<a href="#other-languages">Multilingual</a> •
|
<a href="#other-languages">Multilingual</a> •
|
||||||
<a href="#python-usage">Python</a> •
|
|
||||||
<a href="#contribute">Contribute</a> •
|
<a href="#contribute">Contribute</a> •
|
||||||
<a href="EXAMPLES.md">More examples</a>
|
<a href="EXAMPLES.md">More examples</a>
|
||||||
</p>
|
</p>
|
||||||
@ -33,7 +32,6 @@
|
|||||||
<img width="1216" align="center" alt="whisperx-arch" src="https://user-images.githubusercontent.com/36994049/208313881-903ab3ea-4932-45fd-b3dc-70876cddaaa2.png">
|
<img width="1216" align="center" alt="whisperx-arch" src="https://user-images.githubusercontent.com/36994049/208313881-903ab3ea-4932-45fd-b3dc-70876cddaaa2.png">
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
<p align="left">Whisper-Based Automatic Speech Recognition (ASR) with improved timestamp accuracy using forced alignment.
|
<p align="left">Whisper-Based Automatic Speech Recognition (ASR) with improved timestamp accuracy using forced alignment.
|
||||||
|
|
||||||
</p>
|
</p>
|
||||||
@ -55,6 +53,20 @@ Install this package using
|
|||||||
|
|
||||||
`pip install git+https://github.com/m-bain/whisperx.git`
|
`pip install git+https://github.com/m-bain/whisperx.git`
|
||||||
|
|
||||||
|
If already installed, update package to most recent commit
|
||||||
|
|
||||||
|
`pip install git+https://github.com/m-bain/whisperx.git --upgrade`
|
||||||
|
|
||||||
|
If wishing to modify this package, clone and install in editable mode:
|
||||||
|
```
|
||||||
|
$ git clone https://github.com/m-bain/whisperX.git
|
||||||
|
$ cd whisperX
|
||||||
|
$ pip install -e .
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
`pip install git+https://github.com/m-bain/whisperx.git --upgrade`
|
||||||
|
|
||||||
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
|
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
|
||||||
|
|
||||||
<h2 align="left" id="example">Usage 💬 (command line)</h2>
|
<h2 align="left" id="example">Usage 💬 (command line)</h2>
|
||||||
@ -91,7 +103,7 @@ Currently default models provided for `{en, fr, de, es, it, ja, zh, nl}`. If the
|
|||||||
|
|
||||||
https://user-images.githubusercontent.com/36994049/208298811-e36002ba-3698-4731-97d4-0aebd07e0eb3.mov
|
https://user-images.githubusercontent.com/36994049/208298811-e36002ba-3698-4731-97d4-0aebd07e0eb3.mov
|
||||||
|
|
||||||
## Python usage 🐍
|
## Python usage 🐍
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import whisperx
|
import whisperx
|
||||||
|
@ -2,6 +2,7 @@ numpy
|
|||||||
torch
|
torch
|
||||||
torchaudio
|
torchaudio
|
||||||
tqdm
|
tqdm
|
||||||
|
soundfile
|
||||||
more-itertools
|
more-itertools
|
||||||
transformers>=4.19.0
|
transformers>=4.19.0
|
||||||
ffmpeg-python==0.2.0
|
ffmpeg-python==0.2.0
|
||||||
|
@ -64,7 +64,8 @@ def backtrack(trellis, emission, tokens, blank_id=0):
|
|||||||
if j == 0:
|
if j == 0:
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
raise ValueError("Failed to align")
|
# failed
|
||||||
|
return None
|
||||||
return path[::-1]
|
return path[::-1]
|
||||||
|
|
||||||
# Merge the labels
|
# Merge the labels
|
||||||
|
@ -293,9 +293,13 @@ def align(
|
|||||||
word_segments_list = []
|
word_segments_list = []
|
||||||
for idx, segment in enumerate(transcript):
|
for idx, segment in enumerate(transcript):
|
||||||
if int(segment['start'] * SAMPLE_RATE) >= audio.shape[1]:
|
if int(segment['start'] * SAMPLE_RATE) >= audio.shape[1]:
|
||||||
# original whisper error, transcript is outside of duration of audio, not possible. Skip to next (finish).
|
print("Failed to align segment: original start time longer than audio duration, skipping...")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
if int(segment['start']) >= int(segment['end']):
|
||||||
|
print("Failed to align segment: original end time is not after start time, skipping...")
|
||||||
|
continue
|
||||||
|
|
||||||
t1 = max(segment['start'] - extend_duration, 0)
|
t1 = max(segment['start'] - extend_duration, 0)
|
||||||
t2 = min(segment['end'] + extend_duration, MAX_DURATION)
|
t2 = min(segment['end'] + extend_duration, MAX_DURATION)
|
||||||
if start_from_previous and t1 < prev_t2:
|
if start_from_previous and t1 < prev_t2:
|
||||||
@ -325,53 +329,61 @@ def align(
|
|||||||
t_words_nonempty_idx = [x for x in range(len(t_words_clean)) if t_words_clean[x] != ""]
|
t_words_nonempty_idx = [x for x in range(len(t_words_clean)) if t_words_clean[x] != ""]
|
||||||
segment['word-level'] = []
|
segment['word-level'] = []
|
||||||
|
|
||||||
|
fail_fallback = False
|
||||||
if len(t_words_nonempty) > 0:
|
if len(t_words_nonempty) > 0:
|
||||||
transcription_cleaned = "|".join(t_words_nonempty).lower()
|
transcription_cleaned = "|".join(t_words_nonempty).lower()
|
||||||
tokens = [model_dictionary[c] for c in transcription_cleaned]
|
tokens = [model_dictionary[c] for c in transcription_cleaned]
|
||||||
trellis = get_trellis(emission, tokens)
|
trellis = get_trellis(emission, tokens)
|
||||||
path = backtrack(trellis, emission, tokens)
|
path = backtrack(trellis, emission, tokens)
|
||||||
segments = merge_repeats(path, transcription_cleaned)
|
if path is None:
|
||||||
word_segments = merge_words(segments)
|
print("Failed to align segment: backtrack failed, resorting to original...")
|
||||||
ratio = waveform_segment.size(0) / (trellis.size(0) - 1)
|
fail_fallback = True
|
||||||
|
else:
|
||||||
|
segments = merge_repeats(path, transcription_cleaned)
|
||||||
|
word_segments = merge_words(segments)
|
||||||
|
ratio = waveform_segment.size(0) / (trellis.size(0) - 1)
|
||||||
|
|
||||||
duration = t2 - t1
|
duration = t2 - t1
|
||||||
local = []
|
local = []
|
||||||
t_local = [None] * len(t_words)
|
t_local = [None] * len(t_words)
|
||||||
for wdx, word in enumerate(word_segments):
|
for wdx, word in enumerate(word_segments):
|
||||||
t1_ = ratio * word.start
|
t1_ = ratio * word.start
|
||||||
t2_ = ratio * word.end
|
t2_ = ratio * word.end
|
||||||
local.append((t1_, t2_))
|
local.append((t1_, t2_))
|
||||||
t_local[t_words_nonempty_idx[wdx]] = (t1_ * duration + t1, t2_ * duration + t1)
|
t_local[t_words_nonempty_idx[wdx]] = (t1_ * duration + t1, t2_ * duration + t1)
|
||||||
t1_actual = t1 + local[0][0] * duration
|
t1_actual = t1 + local[0][0] * duration
|
||||||
t2_actual = t1 + local[-1][1] * duration
|
t2_actual = t1 + local[-1][1] * duration
|
||||||
|
|
||||||
segment['start'] = t1_actual
|
segment['start'] = t1_actual
|
||||||
segment['end'] = t2_actual
|
segment['end'] = t2_actual
|
||||||
prev_t2 = segment['end']
|
prev_t2 = segment['end']
|
||||||
|
|
||||||
# for the .ass output
|
# for the .ass output
|
||||||
for x in range(len(t_local)):
|
for x in range(len(t_local)):
|
||||||
curr_word = t_words[x]
|
curr_word = t_words[x]
|
||||||
curr_timestamp = t_local[x]
|
curr_timestamp = t_local[x]
|
||||||
if curr_timestamp is not None:
|
if curr_timestamp is not None:
|
||||||
segment['word-level'].append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
segment['word-level'].append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
||||||
else:
|
|
||||||
segment['word-level'].append({"text": curr_word, "start": None, "end": None})
|
|
||||||
|
|
||||||
# for per-word .srt ouput
|
|
||||||
# merge missing words to previous, or merge with next word ahead if idx == 0
|
|
||||||
for x in range(len(t_local)):
|
|
||||||
curr_word = t_words[x]
|
|
||||||
curr_timestamp = t_local[x]
|
|
||||||
if curr_timestamp is not None:
|
|
||||||
word_segments_list.append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
|
||||||
elif not drop_non_aligned_words:
|
|
||||||
# then we merge
|
|
||||||
if x == 0:
|
|
||||||
t_words[x+1] = " ".join([curr_word, t_words[x+1]])
|
|
||||||
else:
|
else:
|
||||||
word_segments_list[-1]['text'] += ' ' + curr_word
|
segment['word-level'].append({"text": curr_word, "start": None, "end": None})
|
||||||
|
|
||||||
|
# for per-word .srt ouput
|
||||||
|
# merge missing words to previous, or merge with next word ahead if idx == 0
|
||||||
|
for x in range(len(t_local)):
|
||||||
|
curr_word = t_words[x]
|
||||||
|
curr_timestamp = t_local[x]
|
||||||
|
if curr_timestamp is not None:
|
||||||
|
word_segments_list.append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
||||||
|
elif not drop_non_aligned_words:
|
||||||
|
# then we merge
|
||||||
|
if x == 0:
|
||||||
|
t_words[x+1] = " ".join([curr_word, t_words[x+1]])
|
||||||
|
else:
|
||||||
|
word_segments_list[-1]['text'] += ' ' + curr_word
|
||||||
else:
|
else:
|
||||||
|
fail_fallback = True
|
||||||
|
|
||||||
|
if fail_fallback:
|
||||||
# then we resort back to original whisper timestamps
|
# then we resort back to original whisper timestamps
|
||||||
# segment['start] and segment['end'] are unchanged
|
# segment['start] and segment['end'] are unchanged
|
||||||
prev_t2 = 0
|
prev_t2 = 0
|
||||||
|
Reference in New Issue
Block a user