fallback on whisper alignment failures, update readme

This commit is contained in:
Max Bain
2023-01-05 11:15:19 +00:00
parent 93d661f2e4
commit 5a668a7d80
4 changed files with 68 additions and 42 deletions

View File

@ -23,7 +23,6 @@
<a href="#setup">Setup</a> <a href="#setup">Setup</a>
<a href="#example">Usage</a> <a href="#example">Usage</a>
<a href="#other-languages">Multilingual</a> <a href="#other-languages">Multilingual</a>
<a href="#python-usage">Python</a>
<a href="#contribute">Contribute</a> <a href="#contribute">Contribute</a>
<a href="EXAMPLES.md">More examples</a> <a href="EXAMPLES.md">More examples</a>
</p> </p>
@ -33,7 +32,6 @@
<img width="1216" align="center" alt="whisperx-arch" src="https://user-images.githubusercontent.com/36994049/208313881-903ab3ea-4932-45fd-b3dc-70876cddaaa2.png"> <img width="1216" align="center" alt="whisperx-arch" src="https://user-images.githubusercontent.com/36994049/208313881-903ab3ea-4932-45fd-b3dc-70876cddaaa2.png">
<p align="left">Whisper-Based Automatic Speech Recognition (ASR) with improved timestamp accuracy using forced alignment. <p align="left">Whisper-Based Automatic Speech Recognition (ASR) with improved timestamp accuracy using forced alignment.
</p> </p>
@ -55,6 +53,20 @@ Install this package using
`pip install git+https://github.com/m-bain/whisperx.git` `pip install git+https://github.com/m-bain/whisperx.git`
If already installed, update package to most recent commit
`pip install git+https://github.com/m-bain/whisperx.git --upgrade`
If wishing to modify this package, clone and install in editable mode:
```
$ git clone https://github.com/m-bain/whisperX.git
$ cd whisperX
$ pip install -e .
```
`pip install git+https://github.com/m-bain/whisperx.git --upgrade`
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup. You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
<h2 align="left" id="example">Usage 💬 (command line)</h2> <h2 align="left" id="example">Usage 💬 (command line)</h2>
@ -91,7 +103,7 @@ Currently default models provided for `{en, fr, de, es, it, ja, zh, nl}`. If the
https://user-images.githubusercontent.com/36994049/208298811-e36002ba-3698-4731-97d4-0aebd07e0eb3.mov https://user-images.githubusercontent.com/36994049/208298811-e36002ba-3698-4731-97d4-0aebd07e0eb3.mov
## Python usage 🐍 ## Python usage 🐍
```python ```python
import whisperx import whisperx

View File

@ -2,6 +2,7 @@ numpy
torch torch
torchaudio torchaudio
tqdm tqdm
soundfile
more-itertools more-itertools
transformers>=4.19.0 transformers>=4.19.0
ffmpeg-python==0.2.0 ffmpeg-python==0.2.0

View File

@ -64,7 +64,8 @@ def backtrack(trellis, emission, tokens, blank_id=0):
if j == 0: if j == 0:
break break
else: else:
raise ValueError("Failed to align") # failed
return None
return path[::-1] return path[::-1]
# Merge the labels # Merge the labels

View File

@ -293,9 +293,13 @@ def align(
word_segments_list = [] word_segments_list = []
for idx, segment in enumerate(transcript): for idx, segment in enumerate(transcript):
if int(segment['start'] * SAMPLE_RATE) >= audio.shape[1]: if int(segment['start'] * SAMPLE_RATE) >= audio.shape[1]:
# original whisper error, transcript is outside of duration of audio, not possible. Skip to next (finish). print("Failed to align segment: original start time longer than audio duration, skipping...")
continue continue
if int(segment['start']) >= int(segment['end']):
print("Failed to align segment: original end time is not after start time, skipping...")
continue
t1 = max(segment['start'] - extend_duration, 0) t1 = max(segment['start'] - extend_duration, 0)
t2 = min(segment['end'] + extend_duration, MAX_DURATION) t2 = min(segment['end'] + extend_duration, MAX_DURATION)
if start_from_previous and t1 < prev_t2: if start_from_previous and t1 < prev_t2:
@ -325,53 +329,61 @@ def align(
t_words_nonempty_idx = [x for x in range(len(t_words_clean)) if t_words_clean[x] != ""] t_words_nonempty_idx = [x for x in range(len(t_words_clean)) if t_words_clean[x] != ""]
segment['word-level'] = [] segment['word-level'] = []
fail_fallback = False
if len(t_words_nonempty) > 0: if len(t_words_nonempty) > 0:
transcription_cleaned = "|".join(t_words_nonempty).lower() transcription_cleaned = "|".join(t_words_nonempty).lower()
tokens = [model_dictionary[c] for c in transcription_cleaned] tokens = [model_dictionary[c] for c in transcription_cleaned]
trellis = get_trellis(emission, tokens) trellis = get_trellis(emission, tokens)
path = backtrack(trellis, emission, tokens) path = backtrack(trellis, emission, tokens)
segments = merge_repeats(path, transcription_cleaned) if path is None:
word_segments = merge_words(segments) print("Failed to align segment: backtrack failed, resorting to original...")
ratio = waveform_segment.size(0) / (trellis.size(0) - 1) fail_fallback = True
else:
segments = merge_repeats(path, transcription_cleaned)
word_segments = merge_words(segments)
ratio = waveform_segment.size(0) / (trellis.size(0) - 1)
duration = t2 - t1 duration = t2 - t1
local = [] local = []
t_local = [None] * len(t_words) t_local = [None] * len(t_words)
for wdx, word in enumerate(word_segments): for wdx, word in enumerate(word_segments):
t1_ = ratio * word.start t1_ = ratio * word.start
t2_ = ratio * word.end t2_ = ratio * word.end
local.append((t1_, t2_)) local.append((t1_, t2_))
t_local[t_words_nonempty_idx[wdx]] = (t1_ * duration + t1, t2_ * duration + t1) t_local[t_words_nonempty_idx[wdx]] = (t1_ * duration + t1, t2_ * duration + t1)
t1_actual = t1 + local[0][0] * duration t1_actual = t1 + local[0][0] * duration
t2_actual = t1 + local[-1][1] * duration t2_actual = t1 + local[-1][1] * duration
segment['start'] = t1_actual segment['start'] = t1_actual
segment['end'] = t2_actual segment['end'] = t2_actual
prev_t2 = segment['end'] prev_t2 = segment['end']
# for the .ass output # for the .ass output
for x in range(len(t_local)): for x in range(len(t_local)):
curr_word = t_words[x] curr_word = t_words[x]
curr_timestamp = t_local[x] curr_timestamp = t_local[x]
if curr_timestamp is not None: if curr_timestamp is not None:
segment['word-level'].append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]}) segment['word-level'].append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
else:
segment['word-level'].append({"text": curr_word, "start": None, "end": None})
# for per-word .srt ouput
# merge missing words to previous, or merge with next word ahead if idx == 0
for x in range(len(t_local)):
curr_word = t_words[x]
curr_timestamp = t_local[x]
if curr_timestamp is not None:
word_segments_list.append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
elif not drop_non_aligned_words:
# then we merge
if x == 0:
t_words[x+1] = " ".join([curr_word, t_words[x+1]])
else: else:
word_segments_list[-1]['text'] += ' ' + curr_word segment['word-level'].append({"text": curr_word, "start": None, "end": None})
# for per-word .srt ouput
# merge missing words to previous, or merge with next word ahead if idx == 0
for x in range(len(t_local)):
curr_word = t_words[x]
curr_timestamp = t_local[x]
if curr_timestamp is not None:
word_segments_list.append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
elif not drop_non_aligned_words:
# then we merge
if x == 0:
t_words[x+1] = " ".join([curr_word, t_words[x+1]])
else:
word_segments_list[-1]['text'] += ' ' + curr_word
else: else:
fail_fallback = True
if fail_fallback:
# then we resort back to original whisper timestamps # then we resort back to original whisper timestamps
# segment['start] and segment['end'] are unchanged # segment['start] and segment['end'] are unchanged
prev_t2 = 0 prev_t2 = 0