From 5a668a7d8078f5a0efa62f80869c64cf00d47cca Mon Sep 17 00:00:00 2001 From: Max Bain Date: Thu, 5 Jan 2023 11:15:19 +0000 Subject: [PATCH] fallback on whisper alignment failures, update readme --- README.md | 18 +++++++-- requirements.txt | 1 + whisperx/alignment.py | 3 +- whisperx/transcribe.py | 88 ++++++++++++++++++++++++------------------ 4 files changed, 68 insertions(+), 42 deletions(-) diff --git a/README.md b/README.md index 2fe731a..32ab80b 100644 --- a/README.md +++ b/README.md @@ -23,7 +23,6 @@ SetupUsageMultilingual • - PythonContributeMore examples

@@ -33,7 +32,6 @@ whisperx-arch -

Whisper-Based Automatic Speech Recognition (ASR) with improved timestamp accuracy using forced alignment.

@@ -55,6 +53,20 @@ Install this package using `pip install git+https://github.com/m-bain/whisperx.git` +If already installed, update package to most recent commit + +`pip install git+https://github.com/m-bain/whisperx.git --upgrade` + +If wishing to modify this package, clone and install in editable mode: +``` +$ git clone https://github.com/m-bain/whisperX.git +$ cd whisperX +$ pip install -e . +``` + + +`pip install git+https://github.com/m-bain/whisperx.git --upgrade` + You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.

Usage 💬 (command line)

@@ -91,7 +103,7 @@ Currently default models provided for `{en, fr, de, es, it, ja, zh, nl}`. If the https://user-images.githubusercontent.com/36994049/208298811-e36002ba-3698-4731-97d4-0aebd07e0eb3.mov -## Python usage 🐍 +## Python usage 🐍 ```python import whisperx diff --git a/requirements.txt b/requirements.txt index 52f6aa5..26a53c3 100644 --- a/requirements.txt +++ b/requirements.txt @@ -2,6 +2,7 @@ numpy torch torchaudio tqdm +soundfile more-itertools transformers>=4.19.0 ffmpeg-python==0.2.0 diff --git a/whisperx/alignment.py b/whisperx/alignment.py index f4d7bfe..7d59231 100644 --- a/whisperx/alignment.py +++ b/whisperx/alignment.py @@ -64,7 +64,8 @@ def backtrack(trellis, emission, tokens, blank_id=0): if j == 0: break else: - raise ValueError("Failed to align") + # failed + return None return path[::-1] # Merge the labels diff --git a/whisperx/transcribe.py b/whisperx/transcribe.py index 9d9a85e..7375b9b 100644 --- a/whisperx/transcribe.py +++ b/whisperx/transcribe.py @@ -293,9 +293,13 @@ def align( word_segments_list = [] for idx, segment in enumerate(transcript): if int(segment['start'] * SAMPLE_RATE) >= audio.shape[1]: - # original whisper error, transcript is outside of duration of audio, not possible. Skip to next (finish). + print("Failed to align segment: original start time longer than audio duration, skipping...") continue + if int(segment['start']) >= int(segment['end']): + print("Failed to align segment: original end time is not after start time, skipping...") + continue + t1 = max(segment['start'] - extend_duration, 0) t2 = min(segment['end'] + extend_duration, MAX_DURATION) if start_from_previous and t1 < prev_t2: @@ -325,53 +329,61 @@ def align( t_words_nonempty_idx = [x for x in range(len(t_words_clean)) if t_words_clean[x] != ""] segment['word-level'] = [] + fail_fallback = False if len(t_words_nonempty) > 0: transcription_cleaned = "|".join(t_words_nonempty).lower() tokens = [model_dictionary[c] for c in transcription_cleaned] trellis = get_trellis(emission, tokens) path = backtrack(trellis, emission, tokens) - segments = merge_repeats(path, transcription_cleaned) - word_segments = merge_words(segments) - ratio = waveform_segment.size(0) / (trellis.size(0) - 1) + if path is None: + print("Failed to align segment: backtrack failed, resorting to original...") + fail_fallback = True + else: + segments = merge_repeats(path, transcription_cleaned) + word_segments = merge_words(segments) + ratio = waveform_segment.size(0) / (trellis.size(0) - 1) - duration = t2 - t1 - local = [] - t_local = [None] * len(t_words) - for wdx, word in enumerate(word_segments): - t1_ = ratio * word.start - t2_ = ratio * word.end - local.append((t1_, t2_)) - t_local[t_words_nonempty_idx[wdx]] = (t1_ * duration + t1, t2_ * duration + t1) - t1_actual = t1 + local[0][0] * duration - t2_actual = t1 + local[-1][1] * duration + duration = t2 - t1 + local = [] + t_local = [None] * len(t_words) + for wdx, word in enumerate(word_segments): + t1_ = ratio * word.start + t2_ = ratio * word.end + local.append((t1_, t2_)) + t_local[t_words_nonempty_idx[wdx]] = (t1_ * duration + t1, t2_ * duration + t1) + t1_actual = t1 + local[0][0] * duration + t2_actual = t1 + local[-1][1] * duration - segment['start'] = t1_actual - segment['end'] = t2_actual - prev_t2 = segment['end'] + segment['start'] = t1_actual + segment['end'] = t2_actual + prev_t2 = segment['end'] - # for the .ass output - for x in range(len(t_local)): - curr_word = t_words[x] - curr_timestamp = t_local[x] - if curr_timestamp is not None: - segment['word-level'].append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]}) - else: - segment['word-level'].append({"text": curr_word, "start": None, "end": None}) - - # for per-word .srt ouput - # merge missing words to previous, or merge with next word ahead if idx == 0 - for x in range(len(t_local)): - curr_word = t_words[x] - curr_timestamp = t_local[x] - if curr_timestamp is not None: - word_segments_list.append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]}) - elif not drop_non_aligned_words: - # then we merge - if x == 0: - t_words[x+1] = " ".join([curr_word, t_words[x+1]]) + # for the .ass output + for x in range(len(t_local)): + curr_word = t_words[x] + curr_timestamp = t_local[x] + if curr_timestamp is not None: + segment['word-level'].append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]}) else: - word_segments_list[-1]['text'] += ' ' + curr_word + segment['word-level'].append({"text": curr_word, "start": None, "end": None}) + + # for per-word .srt ouput + # merge missing words to previous, or merge with next word ahead if idx == 0 + for x in range(len(t_local)): + curr_word = t_words[x] + curr_timestamp = t_local[x] + if curr_timestamp is not None: + word_segments_list.append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]}) + elif not drop_non_aligned_words: + # then we merge + if x == 0: + t_words[x+1] = " ".join([curr_word, t_words[x+1]]) + else: + word_segments_list[-1]['text'] += ' ' + curr_word else: + fail_fallback = True + + if fail_fallback: # then we resort back to original whisper timestamps # segment['start] and segment['end'] are unchanged prev_t2 = 0