mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
fallback on whisper alignment failures, update readme
This commit is contained in:
@ -293,9 +293,13 @@ def align(
|
||||
word_segments_list = []
|
||||
for idx, segment in enumerate(transcript):
|
||||
if int(segment['start'] * SAMPLE_RATE) >= audio.shape[1]:
|
||||
# original whisper error, transcript is outside of duration of audio, not possible. Skip to next (finish).
|
||||
print("Failed to align segment: original start time longer than audio duration, skipping...")
|
||||
continue
|
||||
|
||||
if int(segment['start']) >= int(segment['end']):
|
||||
print("Failed to align segment: original end time is not after start time, skipping...")
|
||||
continue
|
||||
|
||||
t1 = max(segment['start'] - extend_duration, 0)
|
||||
t2 = min(segment['end'] + extend_duration, MAX_DURATION)
|
||||
if start_from_previous and t1 < prev_t2:
|
||||
@ -325,53 +329,61 @@ def align(
|
||||
t_words_nonempty_idx = [x for x in range(len(t_words_clean)) if t_words_clean[x] != ""]
|
||||
segment['word-level'] = []
|
||||
|
||||
fail_fallback = False
|
||||
if len(t_words_nonempty) > 0:
|
||||
transcription_cleaned = "|".join(t_words_nonempty).lower()
|
||||
tokens = [model_dictionary[c] for c in transcription_cleaned]
|
||||
trellis = get_trellis(emission, tokens)
|
||||
path = backtrack(trellis, emission, tokens)
|
||||
segments = merge_repeats(path, transcription_cleaned)
|
||||
word_segments = merge_words(segments)
|
||||
ratio = waveform_segment.size(0) / (trellis.size(0) - 1)
|
||||
if path is None:
|
||||
print("Failed to align segment: backtrack failed, resorting to original...")
|
||||
fail_fallback = True
|
||||
else:
|
||||
segments = merge_repeats(path, transcription_cleaned)
|
||||
word_segments = merge_words(segments)
|
||||
ratio = waveform_segment.size(0) / (trellis.size(0) - 1)
|
||||
|
||||
duration = t2 - t1
|
||||
local = []
|
||||
t_local = [None] * len(t_words)
|
||||
for wdx, word in enumerate(word_segments):
|
||||
t1_ = ratio * word.start
|
||||
t2_ = ratio * word.end
|
||||
local.append((t1_, t2_))
|
||||
t_local[t_words_nonempty_idx[wdx]] = (t1_ * duration + t1, t2_ * duration + t1)
|
||||
t1_actual = t1 + local[0][0] * duration
|
||||
t2_actual = t1 + local[-1][1] * duration
|
||||
duration = t2 - t1
|
||||
local = []
|
||||
t_local = [None] * len(t_words)
|
||||
for wdx, word in enumerate(word_segments):
|
||||
t1_ = ratio * word.start
|
||||
t2_ = ratio * word.end
|
||||
local.append((t1_, t2_))
|
||||
t_local[t_words_nonempty_idx[wdx]] = (t1_ * duration + t1, t2_ * duration + t1)
|
||||
t1_actual = t1 + local[0][0] * duration
|
||||
t2_actual = t1 + local[-1][1] * duration
|
||||
|
||||
segment['start'] = t1_actual
|
||||
segment['end'] = t2_actual
|
||||
prev_t2 = segment['end']
|
||||
segment['start'] = t1_actual
|
||||
segment['end'] = t2_actual
|
||||
prev_t2 = segment['end']
|
||||
|
||||
# for the .ass output
|
||||
for x in range(len(t_local)):
|
||||
curr_word = t_words[x]
|
||||
curr_timestamp = t_local[x]
|
||||
if curr_timestamp is not None:
|
||||
segment['word-level'].append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
||||
else:
|
||||
segment['word-level'].append({"text": curr_word, "start": None, "end": None})
|
||||
|
||||
# for per-word .srt ouput
|
||||
# merge missing words to previous, or merge with next word ahead if idx == 0
|
||||
for x in range(len(t_local)):
|
||||
curr_word = t_words[x]
|
||||
curr_timestamp = t_local[x]
|
||||
if curr_timestamp is not None:
|
||||
word_segments_list.append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
||||
elif not drop_non_aligned_words:
|
||||
# then we merge
|
||||
if x == 0:
|
||||
t_words[x+1] = " ".join([curr_word, t_words[x+1]])
|
||||
# for the .ass output
|
||||
for x in range(len(t_local)):
|
||||
curr_word = t_words[x]
|
||||
curr_timestamp = t_local[x]
|
||||
if curr_timestamp is not None:
|
||||
segment['word-level'].append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
||||
else:
|
||||
word_segments_list[-1]['text'] += ' ' + curr_word
|
||||
segment['word-level'].append({"text": curr_word, "start": None, "end": None})
|
||||
|
||||
# for per-word .srt ouput
|
||||
# merge missing words to previous, or merge with next word ahead if idx == 0
|
||||
for x in range(len(t_local)):
|
||||
curr_word = t_words[x]
|
||||
curr_timestamp = t_local[x]
|
||||
if curr_timestamp is not None:
|
||||
word_segments_list.append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
||||
elif not drop_non_aligned_words:
|
||||
# then we merge
|
||||
if x == 0:
|
||||
t_words[x+1] = " ".join([curr_word, t_words[x+1]])
|
||||
else:
|
||||
word_segments_list[-1]['text'] += ' ' + curr_word
|
||||
else:
|
||||
fail_fallback = True
|
||||
|
||||
if fail_fallback:
|
||||
# then we resort back to original whisper timestamps
|
||||
# segment['start] and segment['end'] are unchanged
|
||||
prev_t2 = 0
|
||||
|
Reference in New Issue
Block a user