mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
v3 init
This commit is contained in:
89
README.md
89
README.md
@ -32,7 +32,7 @@
|
|||||||
<img width="1216" align="center" alt="whisperx-arch" src="figures/pipeline.png">
|
<img width="1216" align="center" alt="whisperx-arch" src="figures/pipeline.png">
|
||||||
|
|
||||||
|
|
||||||
<p align="left">Whisper-Based Automatic Speech Recognition (ASR) with improved timestamp accuracy using forced alignment.
|
<p align="left">Whisper-Based Automatic Speech Recognition (ASR) with improved timestamp accuracy + quality via forced phoneme alignment and speech-activity batching.
|
||||||
|
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
@ -52,6 +52,7 @@ This repository refines the timestamps of openAI's Whisper model via forced alig
|
|||||||
|
|
||||||
<h2 align="left", id="highlights">New🚨</h2>
|
<h2 align="left", id="highlights">New🚨</h2>
|
||||||
|
|
||||||
|
- v3 released, 70x speed-up open-sourced. Using batched whisper with [faster-whisper](https://github.com/guillaumekln/faster-whisper) backend!
|
||||||
- v2 released, code cleanup, imports whisper library, batched inference from paper not included (contact for licensing / batched model API). VAD filtering is now turned on by default, as in the paper.
|
- v2 released, code cleanup, imports whisper library, batched inference from paper not included (contact for licensing / batched model API). VAD filtering is now turned on by default, as in the paper.
|
||||||
- Paper drop🎓👨🏫! Please see our [ArxiV preprint](https://arxiv.org/abs/2303.00747) for benchmarking and details of WhisperX. We also introduce more efficient batch inference resulting in large-v2 with *60-70x REAL TIME speed (not provided in this repo).
|
- Paper drop🎓👨🏫! Please see our [ArxiV preprint](https://arxiv.org/abs/2303.00747) for benchmarking and details of WhisperX. We also introduce more efficient batch inference resulting in large-v2 with *60-70x REAL TIME speed (not provided in this repo).
|
||||||
- VAD filtering: Voice Activity Detection (VAD) from [Pyannote.audio](https://huggingface.co/pyannote/voice-activity-detection) is used as a preprocessing step to remove reliance on whisper timestamps and only transcribe audio segments containing speech. add `--vad_filter True` flag, increases timestamp accuracy and robustness (requires more GPU mem due to 30s inputs in wav2vec2)
|
- VAD filtering: Voice Activity Detection (VAD) from [Pyannote.audio](https://huggingface.co/pyannote/voice-activity-detection) is used as a preprocessing step to remove reliance on whisper timestamps and only transcribe audio segments containing speech. add `--vad_filter True` flag, increases timestamp accuracy and robustness (requires more GPU mem due to 30s inputs in wav2vec2)
|
||||||
@ -60,7 +61,25 @@ This repository refines the timestamps of openAI's Whisper model via forced alig
|
|||||||
|
|
||||||
|
|
||||||
<h2 align="left" id="setup">Setup ⚙️</h2>
|
<h2 align="left" id="setup">Setup ⚙️</h2>
|
||||||
Install this package using
|
Tested for PyTorch 0.11, Python 3.8 (use other versions at your own risk!)
|
||||||
|
|
||||||
|
GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be installed on the system. Please refer to the [CTranslate2 documentation](https://opennmt.net/CTranslate2/installation.html).
|
||||||
|
|
||||||
|
|
||||||
|
### 1. Create Python3.8 environment
|
||||||
|
|
||||||
|
`conda create --name whisperx python=3.8`
|
||||||
|
|
||||||
|
`conda activate whisperx`
|
||||||
|
|
||||||
|
|
||||||
|
### 2. Install PyTorch 0.11.0, e.g. for Linux and Windows:
|
||||||
|
|
||||||
|
`conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch`
|
||||||
|
|
||||||
|
See other methods [here.](https://pytorch.org/get-started/previous-versions/#wheel-4)
|
||||||
|
|
||||||
|
### 3. Install this repo
|
||||||
|
|
||||||
`pip install git+https://github.com/m-bain/whisperx.git`
|
`pip install git+https://github.com/m-bain/whisperx.git`
|
||||||
|
|
||||||
@ -78,13 +97,6 @@ $ pip install -e .
|
|||||||
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
|
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
|
||||||
|
|
||||||
|
|
||||||
### Setup not working???
|
|
||||||
Safest to use install pytorch as follows (for gpu)
|
|
||||||
|
|
||||||
`conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 -c pytorch
|
|
||||||
`
|
|
||||||
|
|
||||||
|
|
||||||
### Speaker Diarization
|
### Speaker Diarization
|
||||||
To **enable Speaker. Diarization**, include your Hugging Face access token that you can generate from [Here](https://huggingface.co/settings/tokens) after the `--hf_token` argument and accept the user agreement for the following models: [Segmentation](https://huggingface.co/pyannote/segmentation) , [Voice Activity Detection (VAD)](https://huggingface.co/pyannote/voice-activity-detection) , and [Speaker Diarization](https://huggingface.co/pyannote/speaker-diarization)
|
To **enable Speaker. Diarization**, include your Hugging Face access token that you can generate from [Here](https://huggingface.co/settings/tokens) after the `--hf_token` argument and accept the user agreement for the following models: [Segmentation](https://huggingface.co/pyannote/segmentation) , [Voice Activity Detection (VAD)](https://huggingface.co/pyannote/voice-activity-detection) , and [Speaker Diarization](https://huggingface.co/pyannote/speaker-diarization)
|
||||||
|
|
||||||
@ -130,14 +142,15 @@ See more examples in other languages [here](EXAMPLES.md).
|
|||||||
|
|
||||||
```python
|
```python
|
||||||
import whisperx
|
import whisperx
|
||||||
import whisper
|
|
||||||
|
|
||||||
device = "cuda"
|
device = "cuda"
|
||||||
audio_file = "audio.mp3"
|
audio_file = "audio.mp3"
|
||||||
|
|
||||||
# transcribe with original whisper
|
# transcribe with original whisper
|
||||||
model = whisper.load_model("large", device)
|
model = whisperx.load_model("large-v2", device)
|
||||||
result = model.transcribe(audio_file)
|
|
||||||
|
audio = whisperx.load_audio(audio_file)
|
||||||
|
result = model.transcribe(audio, batch_size=8)
|
||||||
|
|
||||||
print(result["segments"]) # before alignment
|
print(result["segments"]) # before alignment
|
||||||
|
|
||||||
@ -145,7 +158,7 @@ print(result["segments"]) # before alignment
|
|||||||
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
||||||
|
|
||||||
# align whisper output
|
# align whisper output
|
||||||
result_aligned = whisperx.align(result["segments"], model_a, metadata, audio_file, device)
|
result_aligned = whisperx.align(result["segments"], model_a, metadata, audio, device)
|
||||||
|
|
||||||
print(result_aligned["segments"]) # after alignment
|
print(result_aligned["segments"]) # after alignment
|
||||||
print(result_aligned["word_segments"]) # after alignment
|
print(result_aligned["word_segments"]) # after alignment
|
||||||
@ -186,9 +199,15 @@ The next major upgrade we are working on is whisper with speaker diarization, so
|
|||||||
|
|
||||||
* [x] Incorporating speaker diarization
|
* [x] Incorporating speaker diarization
|
||||||
|
|
||||||
* [ ] Automatic .wav conversion to make VAD compatible
|
* [x] Model flush, for low gpu mem resources
|
||||||
|
|
||||||
* [ ] Model flush, for low gpu mem resources
|
* [x] Faster-whisper backend
|
||||||
|
|
||||||
|
* [ ] Add benchmarking code (TEDLIUM for spd/WER & word segmentation)
|
||||||
|
|
||||||
|
* [ ] Allow silero-vad as alternative VAD option
|
||||||
|
|
||||||
|
* [ ] Add max-line etc. see (openai's whisper utils.py)
|
||||||
|
|
||||||
* [ ] Improve diarization (word level). *Harder than first thought...*
|
* [ ] Improve diarization (word level). *Harder than first thought...*
|
||||||
|
|
||||||
@ -205,10 +224,13 @@ Contact maxhbain@gmail.com for queries and licensing / early access to a model A
|
|||||||
This work, and my PhD, is supported by the [VGG (Visual Geometry Group)](https://www.robots.ox.ac.uk/~vgg/) and the University of Oxford.
|
This work, and my PhD, is supported by the [VGG (Visual Geometry Group)](https://www.robots.ox.ac.uk/~vgg/) and the University of Oxford.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Of course, this is builds on [openAI's whisper](https://github.com/openai/whisper).
|
Of course, this is builds on [openAI's whisper](https://github.com/openai/whisper).
|
||||||
And borrows important alignment code from [PyTorch tutorial on forced alignment](https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html)
|
And borrows important alignment code from [PyTorch tutorial on forced alignment](https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html)
|
||||||
|
|
||||||
|
Valuable VAD & Diarization Models from (pyannote.audio)[https://github.com/pyannote/pyannote-audio]
|
||||||
|
|
||||||
|
Great backend from (faster-whisper)[https://github.com/guillaumekln/faster-whisper] and (CTranslate2)[https://github.com/OpenNMT/CTranslate2]
|
||||||
|
|
||||||
|
|
||||||
<h2 align="left" id="cite">Citation</h2>
|
<h2 align="left" id="cite">Citation</h2>
|
||||||
If you use this in your research, please cite the paper:
|
If you use this in your research, please cite the paper:
|
||||||
@ -220,37 +242,4 @@ If you use this in your research, please cite the paper:
|
|||||||
journal={arXiv preprint, arXiv:2303.00747},
|
journal={arXiv preprint, arXiv:2303.00747},
|
||||||
year={2023}
|
year={2023}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
as well the following works, used in each stage of the pipeline:
|
|
||||||
|
|
||||||
```bibtex
|
|
||||||
@article{radford2022robust,
|
|
||||||
title={Robust speech recognition via large-scale weak supervision},
|
|
||||||
author={Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
|
|
||||||
journal={arXiv preprint arXiv:2212.04356},
|
|
||||||
year={2022}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
```bibtex
|
|
||||||
@article{baevski2020wav2vec,
|
|
||||||
title={wav2vec 2.0: A framework for self-supervised learning of speech representations},
|
|
||||||
author={Baevski, Alexei and Zhou, Yuhao and Mohamed, Abdelrahman and Auli, Michael},
|
|
||||||
journal={Advances in neural information processing systems},
|
|
||||||
volume={33},
|
|
||||||
pages={12449--12460},
|
|
||||||
year={2020}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
```bibtex
|
|
||||||
@inproceedings{bredin2020pyannote,
|
|
||||||
title={Pyannote. audio: neural building blocks for speaker diarization},
|
|
||||||
author={Bredin, Herv{\'e} and Yin, Ruiqing and Coria, Juan Manuel and Gelly, Gregory and Korshunov, Pavel and Lavechin, Marvin and Fustes, Diego and Titeux, Hadrien and Bouaziz, Wassim and Gill, Marie-Philippe},
|
|
||||||
booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
|
|
||||||
pages={7124--7128},
|
|
||||||
year={2020},
|
|
||||||
organization={IEEE}
|
|
||||||
}
|
|
||||||
```
|
|
@ -1,10 +1,8 @@
|
|||||||
numpy
|
torch==1.11.0
|
||||||
pandas
|
torchaudio==0.11.0
|
||||||
torch >=1.9
|
|
||||||
torchaudio >=0.10,<1.0
|
|
||||||
tqdm
|
|
||||||
more-itertools
|
|
||||||
transformers>=4.19.0
|
|
||||||
ffmpeg-python==0.2.0
|
|
||||||
pyannote.audio
|
pyannote.audio
|
||||||
openai-whisper==20230314
|
faster-whisper
|
||||||
|
transformers
|
||||||
|
ffmpeg-python==0.2.0
|
||||||
|
pandas
|
||||||
|
setuptools==65.6.3
|
2
setup.py
2
setup.py
@ -6,7 +6,7 @@ from setuptools import setup, find_packages
|
|||||||
setup(
|
setup(
|
||||||
name="whisperx",
|
name="whisperx",
|
||||||
py_modules=["whisperx"],
|
py_modules=["whisperx"],
|
||||||
version="2.0",
|
version="3.0.0",
|
||||||
description="Time-Accurate Automatic Speech Recognition using Whisper.",
|
description="Time-Accurate Automatic Speech Recognition using Whisper.",
|
||||||
readme="README.md",
|
readme="README.md",
|
||||||
python_requires=">=3.8",
|
python_requires=">=3.8",
|
||||||
|
@ -1,3 +1,3 @@
|
|||||||
from .transcribe import transcribe, transcribe_with_vad
|
from .transcribe import load_model
|
||||||
from .alignment import load_align_model, align
|
from .alignment import load_align_model, align
|
||||||
from .vad import load_vad_model
|
from .audio import load_audio
|
@ -2,16 +2,17 @@
|
|||||||
Forced Alignment with Whisper
|
Forced Alignment with Whisper
|
||||||
C. Max Bain
|
C. Max Bain
|
||||||
"""
|
"""
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Iterator, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from typing import List, Union, Iterator, TYPE_CHECKING
|
|
||||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
||||||
import torchaudio
|
|
||||||
import torch
|
import torch
|
||||||
from dataclasses import dataclass
|
import torchaudio
|
||||||
from whisper.audio import SAMPLE_RATE, load_audio
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||||||
from .utils import interpolate_nans
|
|
||||||
|
|
||||||
|
from .audio import SAMPLE_RATE, load_audio
|
||||||
|
from .utils import interpolate_nans
|
||||||
|
|
||||||
LANGUAGES_WITHOUT_SPACES = ["ja", "zh"]
|
LANGUAGES_WITHOUT_SPACES = ["ja", "zh"]
|
||||||
|
|
||||||
@ -391,34 +392,42 @@ def align(
|
|||||||
if 'level_1' in cseg: del cseg['level_1']
|
if 'level_1' in cseg: del cseg['level_1']
|
||||||
if 'level_0' in cseg: del cseg['level_0']
|
if 'level_0' in cseg: del cseg['level_0']
|
||||||
cseg.reset_index(inplace=True)
|
cseg.reset_index(inplace=True)
|
||||||
aligned_segments.append(
|
|
||||||
{
|
|
||||||
"start": srow["start"],
|
|
||||||
"end": srow["end"],
|
|
||||||
"text": text,
|
|
||||||
"word-segments": wseg,
|
|
||||||
"char-segments": cseg
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_raw_text(word_row):
|
def get_raw_text(word_row):
|
||||||
return seg["seg-text"][word_row.name][int(word_row["segment-text-start"]):int(word_row["segment-text-end"])+1]
|
return seg["seg-text"][word_row.name][int(word_row["segment-text-start"]):int(word_row["segment-text-end"])+1]
|
||||||
|
|
||||||
|
word_list = []
|
||||||
wdx = 0
|
wdx = 0
|
||||||
curr_text = get_raw_text(wseg.iloc[wdx])
|
curr_text = get_raw_text(wseg.iloc[wdx])
|
||||||
|
if not curr_text.startswith(" "):
|
||||||
|
curr_text = " " + curr_text
|
||||||
|
|
||||||
if len(wseg) > 1:
|
if len(wseg) > 1:
|
||||||
for _, wrow in wseg.iloc[1:].iterrows():
|
for _, wrow in wseg.iloc[1:].iterrows():
|
||||||
if wrow['start'] != wseg.iloc[wdx]['start']:
|
if wrow['start'] != wseg.iloc[wdx]['start']:
|
||||||
|
word_start = wseg.iloc[wdx]['start']
|
||||||
|
word_end = wseg.iloc[wdx]['end']
|
||||||
|
|
||||||
aligned_segments_word.append(
|
aligned_segments_word.append(
|
||||||
{
|
{
|
||||||
"text": curr_text.strip(),
|
"text": curr_text.strip(),
|
||||||
"start": wseg.iloc[wdx]["start"],
|
"start": word_start,
|
||||||
"end": wseg.iloc[wdx]["end"],
|
"end": word_end
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
curr_text = ""
|
|
||||||
curr_text += " " + get_raw_text(wrow)
|
word_list.append(
|
||||||
|
{
|
||||||
|
"word": curr_text.rstrip(),
|
||||||
|
"start": word_start,
|
||||||
|
"end": word_end,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
curr_text = " "
|
||||||
|
curr_text += get_raw_text(wrow) + " "
|
||||||
wdx += 1
|
wdx += 1
|
||||||
|
|
||||||
aligned_segments_word.append(
|
aligned_segments_word.append(
|
||||||
{
|
{
|
||||||
"text": curr_text.strip(),
|
"text": curr_text.strip(),
|
||||||
@ -427,6 +436,25 @@ def align(
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
word_list.append(
|
||||||
|
{
|
||||||
|
"word": curr_text.rstrip(),
|
||||||
|
"start": word_start,
|
||||||
|
"end": word_end,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
aligned_segments.append(
|
||||||
|
{
|
||||||
|
"start": srow["start"],
|
||||||
|
"end": srow["end"],
|
||||||
|
"text": text,
|
||||||
|
"words": word_list,
|
||||||
|
# "word-segments": wseg,
|
||||||
|
# "char-segments": cseg
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
return {"segments": aligned_segments, "word_segments": aligned_segments_word}
|
return {"segments": aligned_segments, "word_segments": aligned_segments_word}
|
||||||
|
|
||||||
|
789
whisperx/asr.py
789
whisperx/asr.py
@ -1,433 +1,406 @@
|
|||||||
|
import os
|
||||||
import warnings
|
import warnings
|
||||||
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
from typing import List, Union
|
||||||
|
|
||||||
|
import ctranslate2
|
||||||
|
import faster_whisper
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import tqdm
|
from transformers import Pipeline
|
||||||
import ffmpeg
|
from transformers.pipelines.pt_utils import PipelineIterator
|
||||||
from whisper.audio import (
|
|
||||||
FRAMES_PER_SECOND,
|
|
||||||
HOP_LENGTH,
|
|
||||||
N_FRAMES,
|
|
||||||
N_SAMPLES,
|
|
||||||
SAMPLE_RATE,
|
|
||||||
CHUNK_LENGTH,
|
|
||||||
log_mel_spectrogram,
|
|
||||||
pad_or_trim,
|
|
||||||
load_audio
|
|
||||||
)
|
|
||||||
from whisper.decoding import DecodingOptions, DecodingResult
|
|
||||||
from whisper.timing import add_word_timestamps
|
|
||||||
from whisper.tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
|
|
||||||
from whisper.utils import (
|
|
||||||
exact_div,
|
|
||||||
format_timestamp,
|
|
||||||
make_safe,
|
|
||||||
)
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
from .audio import N_SAMPLES, SAMPLE_RATE, load_audio, log_mel_spectrogram
|
||||||
from whisper.model import Whisper
|
from .vad import load_vad_model, merge_chunks
|
||||||
|
|
||||||
from .vad import merge_chunks
|
|
||||||
|
|
||||||
def transcribe(
|
def load_model(whisper_arch, device, compute_type="float16", asr_options=None, language=None,
|
||||||
model: "Whisper",
|
vad_options=None, model=None):
|
||||||
audio: Union[str, np.ndarray, torch.Tensor] = None,
|
'''Load a Whisper model for inference.
|
||||||
mel: np.ndarray = None,
|
Args:
|
||||||
verbose: Optional[bool] = None,
|
whisper_arch: str - The name of the Whisper model to load.
|
||||||
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
device: str - The device to load the model on.
|
||||||
compression_ratio_threshold: Optional[float] = 2.4,
|
compute_type: str - The compute type to use for the model.
|
||||||
logprob_threshold: Optional[float] = -1.0,
|
options: dict - A dictionary of options to use for the model.
|
||||||
no_speech_threshold: Optional[float] = 0.6,
|
language: str - The language of the model. (use English for now)
|
||||||
condition_on_previous_text: bool = True,
|
Returns:
|
||||||
initial_prompt: Optional[str] = None,
|
A Whisper pipeline.
|
||||||
word_timestamps: bool = False,
|
'''
|
||||||
prepend_punctuations: str = "\"'“¿([{-",
|
|
||||||
append_punctuations: str = "\"'.。,,!!??::”)]}、",
|
|
||||||
**decode_options,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Transcribe an audio file using Whisper.
|
|
||||||
We redefine the Whisper transcribe function to allow mel input (for sequential slicing of audio)
|
|
||||||
|
|
||||||
Parameters
|
if whisper_arch.endswith(".en"):
|
||||||
----------
|
language = "en"
|
||||||
model: Whisper
|
|
||||||
The Whisper model instance
|
|
||||||
|
|
||||||
audio: Union[str, np.ndarray, torch.Tensor]
|
model = WhisperModel(whisper_arch, device=device, compute_type=compute_type)
|
||||||
The path to the audio file to open, or the audio waveform
|
if language is not None:
|
||||||
|
tokenizer = faster_whisper.tokenizer.Tokenizer(model.hf_tokenizer, model.model.is_multilingual, task="transcribe", language=language)
|
||||||
mel: np.ndarray
|
|
||||||
Mel spectrogram of audio segment.
|
|
||||||
|
|
||||||
verbose: bool
|
|
||||||
Whether to display the text being decoded to the console. If True, displays all the details,
|
|
||||||
If False, displays minimal details. If None, does not display anything
|
|
||||||
|
|
||||||
temperature: Union[float, Tuple[float, ...]]
|
|
||||||
Temperature for sampling. It can be a tuple of temperatures, which will be successively used
|
|
||||||
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
|
|
||||||
|
|
||||||
compression_ratio_threshold: float
|
|
||||||
If the gzip compression ratio is above this value, treat as failed
|
|
||||||
|
|
||||||
logprob_threshold: float
|
|
||||||
If the average log probability over sampled tokens is below this value, treat as failed
|
|
||||||
|
|
||||||
no_speech_threshold: float
|
|
||||||
If the no_speech probability is higher than this value AND the average log probability
|
|
||||||
over sampled tokens is below `logprob_threshold`, consider the segment as silent
|
|
||||||
|
|
||||||
condition_on_previous_text: bool
|
|
||||||
if True, the previous output of the model is provided as a prompt for the next window;
|
|
||||||
disabling may make the text inconsistent across windows, but the model becomes less prone to
|
|
||||||
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
|
|
||||||
|
|
||||||
word_timestamps: bool
|
|
||||||
Extract word-level timestamps using the cross-attention pattern and dynamic time warping,
|
|
||||||
and include the timestamps for each word in each segment.
|
|
||||||
|
|
||||||
prepend_punctuations: str
|
|
||||||
If word_timestamps is True, merge these punctuation symbols with the next word
|
|
||||||
|
|
||||||
append_punctuations: str
|
|
||||||
If word_timestamps is True, merge these punctuation symbols with the previous word
|
|
||||||
|
|
||||||
initial_prompt: Optional[str]
|
|
||||||
Optional text to provide as a prompt for the first window. This can be used to provide, or
|
|
||||||
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
|
|
||||||
to make it more likely to predict those word correctly.
|
|
||||||
|
|
||||||
decode_options: dict
|
|
||||||
Keyword arguments to construct `DecodingOptions` instances
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
|
||||||
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
|
||||||
"""
|
|
||||||
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
|
|
||||||
if model.device == torch.device("cpu"):
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
warnings.warn("Performing inference on CPU when CUDA is available")
|
|
||||||
if dtype == torch.float16:
|
|
||||||
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
|
|
||||||
dtype = torch.float32
|
|
||||||
|
|
||||||
if dtype == torch.float32:
|
|
||||||
decode_options["fp16"] = False
|
|
||||||
|
|
||||||
# Pad 30-seconds of silence to the input audio, for slicing
|
|
||||||
if mel is None:
|
|
||||||
if audio is None:
|
|
||||||
raise ValueError("Transcribe needs either audio or mel as input, currently both are none.")
|
|
||||||
mel = log_mel_spectrogram(audio, padding=N_SAMPLES)
|
|
||||||
content_frames = mel.shape[-1] - N_FRAMES
|
|
||||||
|
|
||||||
if decode_options.get("language", None) is None:
|
|
||||||
if not model.is_multilingual:
|
|
||||||
decode_options["language"] = "en"
|
|
||||||
else:
|
|
||||||
if verbose:
|
|
||||||
print(
|
|
||||||
"Detecting language using up to the first 30 seconds. Use `--language` to specify the language"
|
|
||||||
)
|
|
||||||
mel_segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
|
|
||||||
_, probs = model.detect_language(mel_segment)
|
|
||||||
decode_options["language"] = max(probs, key=probs.get)
|
|
||||||
if verbose is not None:
|
|
||||||
print(
|
|
||||||
f"Detected language: {LANGUAGES[decode_options['language']].title()}"
|
|
||||||
)
|
|
||||||
|
|
||||||
language: str = decode_options["language"]
|
|
||||||
task: str = decode_options.get("task", "transcribe")
|
|
||||||
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=task)
|
|
||||||
|
|
||||||
if word_timestamps and task == "translate":
|
|
||||||
warnings.warn("Word-level timestamps on translations may not be reliable.")
|
|
||||||
|
|
||||||
def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:
|
|
||||||
temperatures = (
|
|
||||||
[temperature] if isinstance(temperature, (int, float)) else temperature
|
|
||||||
)
|
|
||||||
decode_result = None
|
|
||||||
|
|
||||||
for t in temperatures:
|
|
||||||
kwargs = {**decode_options}
|
|
||||||
if t > 0:
|
|
||||||
# disable beam_size and patience when t > 0
|
|
||||||
kwargs.pop("beam_size", None)
|
|
||||||
kwargs.pop("patience", None)
|
|
||||||
else:
|
|
||||||
# disable best_of when t == 0
|
|
||||||
kwargs.pop("best_of", None)
|
|
||||||
|
|
||||||
options = DecodingOptions(**kwargs, temperature=t)
|
|
||||||
decode_result = model.decode(segment, options)
|
|
||||||
|
|
||||||
needs_fallback = False
|
|
||||||
if (
|
|
||||||
compression_ratio_threshold is not None
|
|
||||||
and decode_result.compression_ratio > compression_ratio_threshold
|
|
||||||
):
|
|
||||||
needs_fallback = True # too repetitive
|
|
||||||
if (
|
|
||||||
logprob_threshold is not None
|
|
||||||
and decode_result.avg_logprob < logprob_threshold
|
|
||||||
):
|
|
||||||
needs_fallback = True # average log probability is too low
|
|
||||||
|
|
||||||
if not needs_fallback:
|
|
||||||
break
|
|
||||||
|
|
||||||
return decode_result
|
|
||||||
|
|
||||||
seek = 0
|
|
||||||
input_stride = exact_div(
|
|
||||||
N_FRAMES, model.dims.n_audio_ctx
|
|
||||||
) # mel frames per output token: 2
|
|
||||||
time_precision = (
|
|
||||||
input_stride * HOP_LENGTH / SAMPLE_RATE
|
|
||||||
) # time per output token: 0.02 (seconds)
|
|
||||||
all_tokens = []
|
|
||||||
all_segments = []
|
|
||||||
prompt_reset_since = 0
|
|
||||||
|
|
||||||
if initial_prompt is not None:
|
|
||||||
initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
|
|
||||||
all_tokens.extend(initial_prompt_tokens)
|
|
||||||
else:
|
else:
|
||||||
initial_prompt_tokens = []
|
print("No language specified, language will be first be detected for each audio file (increases inference time).")
|
||||||
|
tokenizer = None
|
||||||
|
|
||||||
def new_segment(
|
default_asr_options = {
|
||||||
*, start: float, end: float, tokens: torch.Tensor, result: DecodingResult
|
"beam_size": 5,
|
||||||
|
"best_of": 5,
|
||||||
|
"patience": 1,
|
||||||
|
"length_penalty": 1,
|
||||||
|
"temperatures": [0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
|
||||||
|
"compression_ratio_threshold": 2.4,
|
||||||
|
"log_prob_threshold": -1.0,
|
||||||
|
"no_speech_threshold": 0.6,
|
||||||
|
"condition_on_previous_text": False,
|
||||||
|
"initial_prompt": None,
|
||||||
|
"prefix": None,
|
||||||
|
"suppress_blank": True,
|
||||||
|
"suppress_tokens": [-1],
|
||||||
|
"without_timestamps": True,
|
||||||
|
"max_initial_timestamp": 0.0,
|
||||||
|
"word_timestamps": False,
|
||||||
|
"prepend_punctuations": "\"'“¿([{-",
|
||||||
|
"append_punctuations": "\"'.。,,!!??::”)]}、"
|
||||||
|
}
|
||||||
|
|
||||||
|
if asr_options is not None:
|
||||||
|
default_asr_options.update(asr_options)
|
||||||
|
default_asr_options = faster_whisper.transcribe.TranscriptionOptions(**default_asr_options)
|
||||||
|
|
||||||
|
default_vad_options = {
|
||||||
|
"vad_onset": 0.500,
|
||||||
|
"vad_offset": 0.363
|
||||||
|
}
|
||||||
|
|
||||||
|
if vad_options is not None:
|
||||||
|
default_vad_options.update(vad_options)
|
||||||
|
|
||||||
|
vad_model = load_vad_model(torch.device(device), use_auth_token=None, **default_vad_options)
|
||||||
|
|
||||||
|
return FasterWhisperPipeline(model, vad_model, default_asr_options, tokenizer)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class WhisperModel(faster_whisper.WhisperModel):
|
||||||
|
'''
|
||||||
|
FasterWhisperModel provides batched inference for faster-whisper.
|
||||||
|
Currently only works in non-timestamp mode.
|
||||||
|
'''
|
||||||
|
|
||||||
|
def generate_segment_batched(self, features: np.ndarray, tokenizer: faster_whisper.tokenizer.Tokenizer, options: faster_whisper.transcribe.TranscriptionOptions, encoder_output = None):
|
||||||
|
batch_size = features.shape[0]
|
||||||
|
all_tokens = []
|
||||||
|
prompt_reset_since = 0
|
||||||
|
if options.initial_prompt is not None:
|
||||||
|
initial_prompt = " " + options.initial_prompt.strip()
|
||||||
|
initial_prompt_tokens = tokenizer.encode(initial_prompt)
|
||||||
|
all_tokens.extend(initial_prompt_tokens)
|
||||||
|
previous_tokens = all_tokens[prompt_reset_since:]
|
||||||
|
prompt = self.get_prompt(
|
||||||
|
tokenizer,
|
||||||
|
previous_tokens,
|
||||||
|
without_timestamps=options.without_timestamps,
|
||||||
|
prefix=options.prefix,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_output = self.encode(features)
|
||||||
|
|
||||||
|
max_initial_timestamp_index = int(
|
||||||
|
round(options.max_initial_timestamp / self.time_precision)
|
||||||
|
)
|
||||||
|
|
||||||
|
result = self.model.generate(
|
||||||
|
encoder_output,
|
||||||
|
[prompt] * batch_size,
|
||||||
|
# length_penalty=options.length_penalty,
|
||||||
|
# max_length=self.max_length,
|
||||||
|
# return_scores=True,
|
||||||
|
# return_no_speech_prob=True,
|
||||||
|
# suppress_blank=options.suppress_blank,
|
||||||
|
# suppress_tokens=options.suppress_tokens,
|
||||||
|
# max_initial_timestamp_index=max_initial_timestamp_index,
|
||||||
|
)
|
||||||
|
|
||||||
|
tokens_batch = [x.sequences_ids[0] for x in result]
|
||||||
|
|
||||||
|
def decode_batch(tokens: List[List[int]]) -> str:
|
||||||
|
res = []
|
||||||
|
for tk in tokens:
|
||||||
|
res.append([token for token in tk if token < tokenizer.eot])
|
||||||
|
# text_tokens = [token for token in tokens if token < self.eot]
|
||||||
|
return tokenizer.tokenizer.decode_batch(res)
|
||||||
|
|
||||||
|
text = decode_batch(tokens_batch)
|
||||||
|
|
||||||
|
return text
|
||||||
|
|
||||||
|
def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
|
||||||
|
# When the model is running on multiple GPUs, the encoder output should be moved
|
||||||
|
# to the CPU since we don't know which GPU will handle the next job.
|
||||||
|
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
|
||||||
|
# unsqueeze if batch size = 1
|
||||||
|
if len(features.shape) == 2:
|
||||||
|
features = np.expand_dims(features, 0)
|
||||||
|
features = faster_whisper.transcribe.get_ctranslate2_storage(features)
|
||||||
|
|
||||||
|
return self.model.encode(features, to_cpu=to_cpu)
|
||||||
|
|
||||||
|
class FasterWhisperPipeline(Pipeline):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model,
|
||||||
|
vad,
|
||||||
|
options,
|
||||||
|
tokenizer=None,
|
||||||
|
device: Union[int, str, "torch.device"] = -1,
|
||||||
|
framework = "pt",
|
||||||
|
**kwargs
|
||||||
):
|
):
|
||||||
tokens = tokens.tolist()
|
self.model = model
|
||||||
text_tokens = [token for token in tokens if token < tokenizer.eot]
|
self.tokenizer = tokenizer
|
||||||
return {
|
self.options = options
|
||||||
"seek": seek,
|
self._batch_size = kwargs.pop("batch_size", None)
|
||||||
"start": start,
|
self._num_workers = 1
|
||||||
"end": end,
|
self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs)
|
||||||
"text": tokenizer.decode(text_tokens),
|
self.call_count = 0
|
||||||
"tokens": tokens,
|
self.framework = framework
|
||||||
"temperature": result.temperature,
|
if self.framework == "pt":
|
||||||
"avg_logprob": result.avg_logprob,
|
if isinstance(device, torch.device):
|
||||||
"compression_ratio": result.compression_ratio,
|
self.device = device
|
||||||
"no_speech_prob": result.no_speech_prob,
|
elif isinstance(device, str):
|
||||||
}
|
self.device = torch.device(device)
|
||||||
|
elif device < 0:
|
||||||
|
self.device = torch.device("cpu")
|
||||||
# show the progress bar when verbose is False (if True, transcribed text will be printed)
|
|
||||||
with tqdm.tqdm(
|
|
||||||
total=content_frames, unit="frames", disable=verbose is not False
|
|
||||||
) as pbar:
|
|
||||||
while seek < content_frames:
|
|
||||||
time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
|
|
||||||
mel_segment = mel[:, seek : seek + N_FRAMES]
|
|
||||||
segment_size = min(N_FRAMES, content_frames - seek)
|
|
||||||
segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
|
|
||||||
mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)
|
|
||||||
|
|
||||||
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
|
||||||
result: DecodingResult = decode_with_fallback(mel_segment)
|
|
||||||
tokens = torch.tensor(result.tokens)
|
|
||||||
if no_speech_threshold is not None:
|
|
||||||
# no voice activity check
|
|
||||||
should_skip = result.no_speech_prob > no_speech_threshold
|
|
||||||
if (
|
|
||||||
logprob_threshold is not None
|
|
||||||
and result.avg_logprob > logprob_threshold
|
|
||||||
):
|
|
||||||
# don't skip if the logprob is high enough, despite the no_speech_prob
|
|
||||||
should_skip = False
|
|
||||||
|
|
||||||
if should_skip:
|
|
||||||
seek += segment_size # fast-forward to the next segment boundary
|
|
||||||
continue
|
|
||||||
|
|
||||||
previous_seek = seek
|
|
||||||
current_segments = []
|
|
||||||
|
|
||||||
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
|
|
||||||
single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
|
|
||||||
|
|
||||||
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
|
|
||||||
consecutive.add_(1)
|
|
||||||
if len(consecutive) > 0:
|
|
||||||
# if the output contains two consecutive timestamp tokens
|
|
||||||
slices = consecutive.tolist()
|
|
||||||
if single_timestamp_ending:
|
|
||||||
slices.append(len(tokens))
|
|
||||||
|
|
||||||
last_slice = 0
|
|
||||||
for current_slice in slices:
|
|
||||||
sliced_tokens = tokens[last_slice:current_slice]
|
|
||||||
start_timestamp_pos = (
|
|
||||||
sliced_tokens[0].item() - tokenizer.timestamp_begin
|
|
||||||
)
|
|
||||||
end_timestamp_pos = (
|
|
||||||
sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
|
||||||
)
|
|
||||||
|
|
||||||
# clamp end-time to at least be 1 frame after start-time
|
|
||||||
end_timestamp_pos = max(end_timestamp_pos, start_timestamp_pos + time_precision)
|
|
||||||
|
|
||||||
current_segments.append(
|
|
||||||
new_segment(
|
|
||||||
start=time_offset + start_timestamp_pos * time_precision,
|
|
||||||
end=time_offset + end_timestamp_pos * time_precision,
|
|
||||||
tokens=sliced_tokens,
|
|
||||||
result=result,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
last_slice = current_slice
|
|
||||||
|
|
||||||
if single_timestamp_ending:
|
|
||||||
# single timestamp at the end means no speech after the last timestamp.
|
|
||||||
seek += segment_size
|
|
||||||
else:
|
|
||||||
# otherwise, ignore the unfinished segment and seek to the last timestamp
|
|
||||||
last_timestamp_pos = (
|
|
||||||
tokens[last_slice - 1].item() - tokenizer.timestamp_begin
|
|
||||||
)
|
|
||||||
seek += last_timestamp_pos * input_stride
|
|
||||||
else:
|
else:
|
||||||
duration = segment_duration
|
self.device = torch.device(f"cuda:{device}")
|
||||||
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
else:
|
||||||
if (
|
self.device = device
|
||||||
len(timestamps) > 0
|
|
||||||
and timestamps[-1].item() != tokenizer.timestamp_begin
|
super(Pipeline, self).__init__()
|
||||||
):
|
self.vad_model = vad
|
||||||
# no consecutive timestamps but it has a timestamp; use the last one.
|
|
||||||
last_timestamp_pos = (
|
|
||||||
timestamps[-1].item() - tokenizer.timestamp_begin
|
|
||||||
)
|
|
||||||
duration = last_timestamp_pos * time_precision
|
|
||||||
|
|
||||||
current_segments.append(
|
def _sanitize_parameters(self, **kwargs):
|
||||||
new_segment(
|
preprocess_kwargs = {}
|
||||||
start=time_offset,
|
if "tokenizer" in kwargs:
|
||||||
end=time_offset + duration,
|
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
|
||||||
tokens=tokens,
|
return preprocess_kwargs, {}, {}
|
||||||
result=result,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
seek += segment_size
|
|
||||||
|
|
||||||
if not condition_on_previous_text or result.temperature > 0.5:
|
def preprocess(self, audio):
|
||||||
# do not feed the prompt tokens if a high temperature was used
|
audio = audio['inputs']
|
||||||
prompt_reset_since = len(all_tokens)
|
features = log_mel_spectrogram(audio, padding=N_SAMPLES - audio.shape[0])
|
||||||
|
return {'inputs': features}
|
||||||
|
|
||||||
if word_timestamps:
|
def _forward(self, model_inputs):
|
||||||
add_word_timestamps(
|
outputs = self.model.generate_segment_batched(model_inputs['inputs'], self.tokenizer, self.options)
|
||||||
segments=current_segments,
|
return {'text': outputs}
|
||||||
model=model,
|
|
||||||
tokenizer=tokenizer,
|
def postprocess(self, model_outputs):
|
||||||
mel=mel_segment,
|
return model_outputs
|
||||||
num_frames=segment_size,
|
|
||||||
prepend_punctuations=prepend_punctuations,
|
|
||||||
append_punctuations=append_punctuations,
|
|
||||||
)
|
|
||||||
word_end_timestamps = [
|
|
||||||
w["end"] for s in current_segments for w in s["words"]
|
|
||||||
]
|
|
||||||
if not single_timestamp_ending and len(word_end_timestamps) > 0:
|
|
||||||
seek_shift = round(
|
|
||||||
(word_end_timestamps[-1] - time_offset) * FRAMES_PER_SECOND
|
|
||||||
)
|
|
||||||
if seek_shift > 0:
|
|
||||||
seek = previous_seek + seek_shift
|
|
||||||
|
|
||||||
if verbose:
|
def get_iterator(
|
||||||
for segment in current_segments:
|
self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
|
||||||
start, end, text = segment["start"], segment["end"], segment["text"]
|
):
|
||||||
line = f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}"
|
dataset = PipelineIterator(inputs, self.preprocess, preprocess_params)
|
||||||
print(make_safe(line))
|
if "TOKENIZERS_PARALLELISM" not in os.environ:
|
||||||
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
|
# TODO hack by collating feature_extractor and image_processor
|
||||||
|
|
||||||
# if a segment is instantaneous or does not contain text, clear it
|
def stack(items):
|
||||||
for i, segment in enumerate(current_segments):
|
return {'inputs': torch.stack([x['inputs'] for x in items])}
|
||||||
if segment["start"] == segment["end"] or segment["text"].strip() == "":
|
dataloader = torch.utils.data.DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=stack)
|
||||||
segment["text"] = ""
|
model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size)
|
||||||
segment["tokens"] = []
|
final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params)
|
||||||
segment["words"] = []
|
return final_iterator
|
||||||
|
|
||||||
all_segments.extend(
|
def transcribe(
|
||||||
[
|
self, audio: Union[str, np.ndarray], batch_size=None
|
||||||
{"id": i, **segment}
|
):
|
||||||
for i, segment in enumerate(
|
if isinstance(audio, str):
|
||||||
current_segments, start=len(all_segments)
|
audio = load_audio(audio)
|
||||||
)
|
|
||||||
]
|
def data(audio, segments):
|
||||||
)
|
for seg in segments:
|
||||||
all_tokens.extend(
|
f1 = int(seg['start'] * SAMPLE_RATE)
|
||||||
[token for segment in current_segments for token in segment["tokens"]]
|
f2 = int(seg['end'] * SAMPLE_RATE)
|
||||||
)
|
# print(f2-f1)
|
||||||
|
yield {'inputs': audio[f1:f2]}
|
||||||
|
|
||||||
# update progress bar
|
vad_segments = self.vad_model({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": SAMPLE_RATE})
|
||||||
pbar.update(min(content_frames, seek) - previous_seek)
|
vad_segments = merge_chunks(vad_segments, 30)
|
||||||
|
|
||||||
|
del_tokenizer = False
|
||||||
|
if self.tokenizer is None:
|
||||||
|
language = self.detect_language(audio)
|
||||||
|
self.tokenizer = faster_whisper.tokenizer.Tokenizer(self.model.hf_tokenizer, self.model.model.is_multilingual, task="transcribe", language=language)
|
||||||
|
del_tokenizer = True
|
||||||
|
else:
|
||||||
|
language = self.tokenizer.language_code
|
||||||
|
|
||||||
return dict(
|
segments = []
|
||||||
text=tokenizer.decode(all_tokens[len(initial_prompt_tokens) :]),
|
batch_size = batch_size or self._batch_size
|
||||||
segments=all_segments,
|
for idx, out in enumerate(self.__call__(data(audio, vad_segments), batch_size=batch_size)):
|
||||||
language=language,
|
text = out['text']
|
||||||
)
|
if batch_size in [0, 1, None]:
|
||||||
|
text = text[0]
|
||||||
|
segments.append(
|
||||||
def transcribe_with_vad(
|
{
|
||||||
model: "Whisper",
|
"text": out['text'],
|
||||||
audio: str,
|
"start": round(vad_segments[idx]['start'], 3),
|
||||||
vad_pipeline,
|
"end": round(vad_segments[idx]['end'], 3)
|
||||||
mel = None,
|
|
||||||
verbose: Optional[bool] = None,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Transcribe per VAD segment
|
|
||||||
"""
|
|
||||||
|
|
||||||
vad_segments = vad_pipeline(audio)
|
|
||||||
|
|
||||||
# if not torch.is_tensor(audio):
|
|
||||||
# if isinstance(audio, str):
|
|
||||||
audio = load_audio(audio)
|
|
||||||
audio = torch.from_numpy(audio)
|
|
||||||
|
|
||||||
prev = 0
|
|
||||||
output = {"segments": []}
|
|
||||||
|
|
||||||
# merge segments to approx 30s inputs to make whisper most appropraite
|
|
||||||
vad_segments = merge_chunks(vad_segments, chunk_size=CHUNK_LENGTH)
|
|
||||||
if len(vad_segments) == 0:
|
|
||||||
return output
|
|
||||||
|
|
||||||
print(">>Performing transcription...")
|
|
||||||
for sdx, seg_t in enumerate(vad_segments):
|
|
||||||
if verbose:
|
|
||||||
print(f"~~ Transcribing VAD chunk: ({format_timestamp(seg_t['start'])} --> {format_timestamp(seg_t['end'])}) ~~")
|
|
||||||
seg_f_start, seg_f_end = int(seg_t["start"] * SAMPLE_RATE), int(seg_t["end"] * SAMPLE_RATE)
|
|
||||||
local_f_start, local_f_end = seg_f_start - prev, seg_f_end - prev
|
|
||||||
audio = audio[local_f_start:] # seek forward
|
|
||||||
seg_audio = audio[:local_f_end-local_f_start] # seek forward
|
|
||||||
prev = seg_f_start
|
|
||||||
local_mel = log_mel_spectrogram(seg_audio, padding=N_SAMPLES)
|
|
||||||
# need to pad
|
|
||||||
|
|
||||||
result = transcribe(model, audio, mel=local_mel, verbose=verbose, **kwargs)
|
|
||||||
seg_t["text"] = result["text"]
|
|
||||||
output["segments"].append(
|
|
||||||
{
|
|
||||||
"start": seg_t["start"],
|
|
||||||
"end": seg_t["end"],
|
|
||||||
"language": result["language"],
|
|
||||||
"text": result["text"],
|
|
||||||
"seg-text": [x["text"] for x in result["segments"]],
|
|
||||||
"seg-start": [x["start"] for x in result["segments"]],
|
|
||||||
"seg-end": [x["end"] for x in result["segments"]],
|
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if del_tokenizer:
|
||||||
|
self.tokenizer = None
|
||||||
|
|
||||||
output["language"] = output["segments"][0]["language"]
|
return {"segments": segments, "language": language}
|
||||||
|
|
||||||
return output
|
|
||||||
|
def detect_language(self, audio: np.ndarray):
|
||||||
|
segment = log_mel_spectrogram(audio[: N_SAMPLES], padding=0)
|
||||||
|
encoder_output = self.model.encode(segment)
|
||||||
|
results = self.model.model.detect_language(encoder_output)
|
||||||
|
language_token, language_probability = results[0][0]
|
||||||
|
language = language_token[2:-2]
|
||||||
|
print(f"Detected language: {language} ({language_probability:.2f}) in first 30s of audio...")
|
||||||
|
return language
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main_type = "simple"
|
||||||
|
import time
|
||||||
|
|
||||||
|
import jiwer
|
||||||
|
from tqdm import tqdm
|
||||||
|
from whisper.normalizers import EnglishTextNormalizer
|
||||||
|
|
||||||
|
from benchmark.tedlium import parse_tedlium_annos
|
||||||
|
|
||||||
|
if main_type == "complex":
|
||||||
|
from faster_whisper.tokenizer import Tokenizer
|
||||||
|
from faster_whisper.transcribe import TranscriptionOptions
|
||||||
|
from faster_whisper.vad import (SpeechTimestampsMap,
|
||||||
|
get_speech_timestamps)
|
||||||
|
|
||||||
|
from whisperx.vad import load_vad_model, merge_chunks
|
||||||
|
|
||||||
|
from .audio import SAMPLE_RATE, load_audio, log_mel_spectrogram
|
||||||
|
faster_t_options = TranscriptionOptions(
|
||||||
|
beam_size=5,
|
||||||
|
best_of=5,
|
||||||
|
patience=1,
|
||||||
|
length_penalty=1,
|
||||||
|
temperatures=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
|
||||||
|
compression_ratio_threshold=2.4,
|
||||||
|
log_prob_threshold=-1.0,
|
||||||
|
no_speech_threshold=0.6,
|
||||||
|
condition_on_previous_text=False,
|
||||||
|
initial_prompt=None,
|
||||||
|
prefix=None,
|
||||||
|
suppress_blank=True,
|
||||||
|
suppress_tokens=[-1],
|
||||||
|
without_timestamps=True,
|
||||||
|
max_initial_timestamp=0.0,
|
||||||
|
word_timestamps=False,
|
||||||
|
prepend_punctuations="\"'“¿([{-",
|
||||||
|
append_punctuations="\"'.。,,!!??::”)]}、"
|
||||||
|
)
|
||||||
|
whisper_arch = "large-v2"
|
||||||
|
device = "cuda"
|
||||||
|
batch_size = 16
|
||||||
|
model = WhisperModel(whisper_arch, device="cuda", compute_type="float16",)
|
||||||
|
tokenizer = Tokenizer(model.hf_tokenizer, model.model.is_multilingual, task="transcribe", language="en")
|
||||||
|
model = FasterWhisperPipeline(model, tokenizer, faster_t_options, device=-1)
|
||||||
|
fn = "DanielKahneman_2010.wav"
|
||||||
|
wav_dir = f"/tmp/test/wav/"
|
||||||
|
vad_model = load_vad_model("cuda", 0.6, 0.3)
|
||||||
|
audio = load_audio(os.path.join(wav_dir, fn))
|
||||||
|
vad_segments = vad_model({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": SAMPLE_RATE})
|
||||||
|
vad_segments = merge_chunks(vad_segments, 30)
|
||||||
|
|
||||||
|
def data(audio, segments):
|
||||||
|
for seg in segments:
|
||||||
|
f1 = int(seg['start'] * SAMPLE_RATE)
|
||||||
|
f2 = int(seg['end'] * SAMPLE_RATE)
|
||||||
|
# print(f2-f1)
|
||||||
|
yield {'inputs': audio[f1:f2]}
|
||||||
|
vad_method="pyannote"
|
||||||
|
|
||||||
|
wav_dir = f"/tmp/test/wav/"
|
||||||
|
wer_li = []
|
||||||
|
time_li = []
|
||||||
|
for fn in os.listdir(wav_dir):
|
||||||
|
if fn == "RobertGupta_2010U.wav":
|
||||||
|
continue
|
||||||
|
base_fn = fn.split('.')[0]
|
||||||
|
audio_fp = os.path.join(wav_dir, fn)
|
||||||
|
|
||||||
|
audio = load_audio(audio_fp)
|
||||||
|
t1 = time.time()
|
||||||
|
if vad_method == "pyannote":
|
||||||
|
vad_segments = vad_model({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": SAMPLE_RATE})
|
||||||
|
vad_segments = merge_chunks(vad_segments, 30)
|
||||||
|
elif vad_method == "silero":
|
||||||
|
vad_segments = get_speech_timestamps(audio, threshold=0.5, max_speech_duration_s=30)
|
||||||
|
vad_segments = [{"start": x["start"] / SAMPLE_RATE, "end": x["end"] / SAMPLE_RATE} for x in vad_segments]
|
||||||
|
new_segs = []
|
||||||
|
curr_start = vad_segments[0]['start']
|
||||||
|
curr_end = vad_segments[0]['end']
|
||||||
|
for seg in vad_segments[1:]:
|
||||||
|
if seg['end'] - curr_start > 30:
|
||||||
|
new_segs.append({"start": curr_start, "end": curr_end})
|
||||||
|
curr_start = seg['start']
|
||||||
|
curr_end = seg['end']
|
||||||
|
else:
|
||||||
|
curr_end = seg['end']
|
||||||
|
new_segs.append({"start": curr_start, "end": curr_end})
|
||||||
|
vad_segments = new_segs
|
||||||
|
text = []
|
||||||
|
# for idx, out in tqdm(enumerate(model(data(audio_fp, vad_segments), batch_size=batch_size)), total=len(vad_segments)):
|
||||||
|
for idx, out in enumerate(model(data(audio, vad_segments), batch_size=batch_size)):
|
||||||
|
text.append(out['text'])
|
||||||
|
t2 = time.time()
|
||||||
|
if batch_size == 1:
|
||||||
|
text = [x[0] for x in text]
|
||||||
|
text = " ".join(text)
|
||||||
|
|
||||||
|
normalizer = EnglishTextNormalizer()
|
||||||
|
text = normalizer(text)
|
||||||
|
gt_corpus = normalizer(parse_tedlium_annos(base_fn, "/tmp/test/"))
|
||||||
|
|
||||||
|
wer_result = jiwer.wer(gt_corpus, text)
|
||||||
|
print("WER: %.2f \t time: %.2f \t [%s]" % (wer_result * 100, t2-t1, fn))
|
||||||
|
|
||||||
|
wer_li.append(wer_result)
|
||||||
|
time_li.append(t2-t1)
|
||||||
|
print("# Avg Mean...")
|
||||||
|
print("WER: %.2f" % (sum(wer_li) * 100/len(wer_li)))
|
||||||
|
print("Time: %.2f" % (sum(time_li)/len(time_li)))
|
||||||
|
elif main_type == "simple":
|
||||||
|
model = load_model(
|
||||||
|
"large-v2",
|
||||||
|
device="cuda",
|
||||||
|
language="en",
|
||||||
|
)
|
||||||
|
|
||||||
|
wav_dir = f"/tmp/test/wav/"
|
||||||
|
wer_li = []
|
||||||
|
time_li = []
|
||||||
|
for fn in os.listdir(wav_dir):
|
||||||
|
if fn == "RobertGupta_2010U.wav":
|
||||||
|
continue
|
||||||
|
# fn = "DanielKahneman_2010.wav"
|
||||||
|
base_fn = fn.split('.')[0]
|
||||||
|
audio_fp = os.path.join(wav_dir, fn)
|
||||||
|
|
||||||
|
audio = load_audio(audio_fp)
|
||||||
|
t1 = time.time()
|
||||||
|
out = model.transcribe(audio_fp, batch_size=8)["segments"]
|
||||||
|
t2 = time.time()
|
||||||
|
|
||||||
|
text = " ".join([x['text'] for x in out])
|
||||||
|
normalizer = EnglishTextNormalizer()
|
||||||
|
text = normalizer(text)
|
||||||
|
gt_corpus = normalizer(parse_tedlium_annos(base_fn, "/tmp/test/"))
|
||||||
|
|
||||||
|
wer_result = jiwer.wer(gt_corpus, text)
|
||||||
|
print("WER: %.2f \t time: %.2f \t [%s]" % (wer_result * 100, t2-t1, fn))
|
||||||
|
|
||||||
|
wer_li.append(wer_result)
|
||||||
|
time_li.append(t2-t1)
|
||||||
|
print("# Avg Mean...")
|
||||||
|
print("WER: %.2f" % (sum(wer_li) * 100/len(wer_li)))
|
||||||
|
print("Time: %.2f" % (sum(time_li)/len(time_li)))
|
||||||
|
BIN
whisperx/assets/mel_filters.npz
Normal file
BIN
whisperx/assets/mel_filters.npz
Normal file
Binary file not shown.
147
whisperx/audio.py
Normal file
147
whisperx/audio.py
Normal file
@ -0,0 +1,147 @@
|
|||||||
|
import os
|
||||||
|
from functools import lru_cache
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
|
import ffmpeg
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from .utils import exact_div
|
||||||
|
|
||||||
|
# hard-coded audio hyperparameters
|
||||||
|
SAMPLE_RATE = 16000
|
||||||
|
N_FFT = 400
|
||||||
|
N_MELS = 80
|
||||||
|
HOP_LENGTH = 160
|
||||||
|
CHUNK_LENGTH = 30
|
||||||
|
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
|
||||||
|
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input
|
||||||
|
|
||||||
|
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
|
||||||
|
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
||||||
|
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
||||||
|
|
||||||
|
|
||||||
|
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||||
|
"""
|
||||||
|
Open an audio file and read as mono waveform, resampling as necessary
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
file: str
|
||||||
|
The audio file to open
|
||||||
|
|
||||||
|
sr: int
|
||||||
|
The sample rate to resample the audio if necessary
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
A NumPy array containing the audio waveform, in float32 dtype.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||||
|
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||||
|
out, _ = (
|
||||||
|
ffmpeg.input(file, threads=0)
|
||||||
|
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
||||||
|
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
||||||
|
)
|
||||||
|
except ffmpeg.Error as e:
|
||||||
|
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||||||
|
|
||||||
|
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
||||||
|
|
||||||
|
|
||||||
|
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||||
|
"""
|
||||||
|
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
||||||
|
"""
|
||||||
|
if torch.is_tensor(array):
|
||||||
|
if array.shape[axis] > length:
|
||||||
|
array = array.index_select(
|
||||||
|
dim=axis, index=torch.arange(length, device=array.device)
|
||||||
|
)
|
||||||
|
|
||||||
|
if array.shape[axis] < length:
|
||||||
|
pad_widths = [(0, 0)] * array.ndim
|
||||||
|
pad_widths[axis] = (0, length - array.shape[axis])
|
||||||
|
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
|
||||||
|
else:
|
||||||
|
if array.shape[axis] > length:
|
||||||
|
array = array.take(indices=range(length), axis=axis)
|
||||||
|
|
||||||
|
if array.shape[axis] < length:
|
||||||
|
pad_widths = [(0, 0)] * array.ndim
|
||||||
|
pad_widths[axis] = (0, length - array.shape[axis])
|
||||||
|
array = np.pad(array, pad_widths)
|
||||||
|
|
||||||
|
return array
|
||||||
|
|
||||||
|
|
||||||
|
@lru_cache(maxsize=None)
|
||||||
|
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||||||
|
Allows decoupling librosa dependency; saved using:
|
||||||
|
|
||||||
|
np.savez_compressed(
|
||||||
|
"mel_filters.npz",
|
||||||
|
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
|
||||||
|
with np.load(
|
||||||
|
os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
|
||||||
|
) as f:
|
||||||
|
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
|
||||||
|
|
||||||
|
|
||||||
|
def log_mel_spectrogram(
|
||||||
|
audio: Union[str, np.ndarray, torch.Tensor],
|
||||||
|
n_mels: int = N_MELS,
|
||||||
|
padding: int = 0,
|
||||||
|
device: Optional[Union[str, torch.device]] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Compute the log-Mel spectrogram of
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
||||||
|
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
||||||
|
|
||||||
|
n_mels: int
|
||||||
|
The number of Mel-frequency filters, only 80 is supported
|
||||||
|
|
||||||
|
padding: int
|
||||||
|
Number of zero samples to pad to the right
|
||||||
|
|
||||||
|
device: Optional[Union[str, torch.device]]
|
||||||
|
If given, the audio tensor is moved to this device before STFT
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
torch.Tensor, shape = (80, n_frames)
|
||||||
|
A Tensor that contains the Mel spectrogram
|
||||||
|
"""
|
||||||
|
if not torch.is_tensor(audio):
|
||||||
|
if isinstance(audio, str):
|
||||||
|
audio = load_audio(audio)
|
||||||
|
audio = torch.from_numpy(audio)
|
||||||
|
|
||||||
|
if device is not None:
|
||||||
|
audio = audio.to(device)
|
||||||
|
if padding > 0:
|
||||||
|
audio = F.pad(audio, (0, padding))
|
||||||
|
window = torch.hann_window(N_FFT).to(audio.device)
|
||||||
|
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
|
||||||
|
magnitudes = stft[..., :-1].abs() ** 2
|
||||||
|
|
||||||
|
filters = mel_filters(audio.device, n_mels)
|
||||||
|
mel_spec = filters @ magnitudes
|
||||||
|
|
||||||
|
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
||||||
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
||||||
|
log_spec = (log_spec + 4.0) / 4.0
|
||||||
|
return log_spec
|
@ -1,37 +1,30 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import os
|
|
||||||
import gc
|
import gc
|
||||||
|
import os
|
||||||
import warnings
|
import warnings
|
||||||
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import tempfile
|
|
||||||
import ffmpeg
|
|
||||||
from whisper.tokenizer import LANGUAGES, TO_LANGUAGE_CODE
|
|
||||||
from whisper.audio import SAMPLE_RATE
|
|
||||||
from whisper.utils import (
|
|
||||||
optional_float,
|
|
||||||
optional_int,
|
|
||||||
str2bool,
|
|
||||||
)
|
|
||||||
|
|
||||||
from .alignment import load_align_model, align
|
from .alignment import align, load_align_model
|
||||||
from .asr import transcribe, transcribe_with_vad
|
from .asr import load_model
|
||||||
|
from .audio import load_audio
|
||||||
from .diarize import DiarizationPipeline, assign_word_speakers
|
from .diarize import DiarizationPipeline, assign_word_speakers
|
||||||
from .utils import get_writer
|
from .utils import (LANGUAGES, TO_LANGUAGE_CODE, get_writer, optional_float,
|
||||||
from .vad import load_vad_model
|
optional_int, str2bool)
|
||||||
|
|
||||||
|
|
||||||
def cli():
|
def cli():
|
||||||
from whisper import available_models
|
|
||||||
|
|
||||||
# fmt: off
|
# fmt: off
|
||||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||||
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
|
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
|
||||||
parser.add_argument("--model", default="small", choices=available_models(), help="name of the Whisper model to use")
|
parser.add_argument("--model", default="small", help="name of the Whisper model to use")
|
||||||
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
|
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
|
||||||
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
|
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
|
||||||
|
parser.add_argument("--batch_size", default=8, type=int, help="device to use for PyTorch inference")
|
||||||
|
|
||||||
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
||||||
parser.add_argument("--output_format", "-f", type=str, default="all", choices=["all", "srt", "srt-word", "vtt", "txt", "tsv", "ass", "ass-char", "pickle", "vad"], help="format of the output file; if not specified, all available formats will be produced")
|
parser.add_argument("--output_format", "-f", type=str, default="all", choices=["all", "srt", "vtt", "txt", "tsv", "json"], help="format of the output file; if not specified, all available formats will be produced")
|
||||||
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
||||||
|
|
||||||
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
|
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
|
||||||
@ -39,13 +32,10 @@ def cli():
|
|||||||
|
|
||||||
# alignment params
|
# alignment params
|
||||||
parser.add_argument("--align_model", default=None, help="Name of phoneme-level ASR model to do alignment")
|
parser.add_argument("--align_model", default=None, help="Name of phoneme-level ASR model to do alignment")
|
||||||
parser.add_argument("--align_extend", default=2, type=float, help="Seconds before and after to extend the whisper segments for alignment (if not using VAD).")
|
|
||||||
parser.add_argument("--align_from_prev", default=True, type=bool, help="Whether to clip the alignment start time of current segment to the end time of the last aligned word of the previous segment (if not using VAD)")
|
|
||||||
parser.add_argument("--interpolate_method", default="nearest", choices=["nearest", "linear", "ignore"], help="For word .srt, method to assign timestamps to non-aligned words, or merge them into neighbouring.")
|
parser.add_argument("--interpolate_method", default="nearest", choices=["nearest", "linear", "ignore"], help="For word .srt, method to assign timestamps to non-aligned words, or merge them into neighbouring.")
|
||||||
parser.add_argument("--no_align", action='store_true', help="Do not perform phoneme alignment")
|
parser.add_argument("--no_align", action='store_true', help="Do not perform phoneme alignment")
|
||||||
|
|
||||||
# vad params
|
# vad params
|
||||||
parser.add_argument("--vad_filter", type=str2bool, default=True, help="Whether to pre-segment audio with VAD, highly recommended! Produces more accurate alignment + timestamp see WhisperX paper https://arxiv.org/abs/2303.00747")
|
|
||||||
parser.add_argument("--vad_onset", type=float, default=0.500, help="Onset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected")
|
parser.add_argument("--vad_onset", type=float, default=0.500, help="Onset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected")
|
||||||
parser.add_argument("--vad_offset", type=float, default=0.363, help="Offset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected.")
|
parser.add_argument("--vad_offset", type=float, default=0.363, help="Offset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected.")
|
||||||
|
|
||||||
@ -69,9 +59,14 @@ def cli():
|
|||||||
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
|
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
|
||||||
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
|
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
|
||||||
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
|
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
|
||||||
parser.add_argument("--word_timestamps", type=str2bool, default=False, help="(experimental) extract word-level timestamps and refine the results based on them")
|
|
||||||
parser.add_argument("--prepend_punctuations", type=str, default="\"\'“¿([{-", help="if word_timestamps is True, merge these punctuation symbols with the next word")
|
parser.add_argument("--max_line_width", type=optional_int, default=None, help="(not possible with --no_align) the maximum number of characters in a line before breaking the line")
|
||||||
parser.add_argument("--append_punctuations", type=str, default="\"\'.。,,!!??::”)]}、", help="if word_timestamps is True, merge these punctuation symbols with the previous word")
|
parser.add_argument("--max_line_count", type=optional_int, default=None, help="(requires --no_align) the maximum number of lines in a segment")
|
||||||
|
parser.add_argument("--highlight_words", type=str2bool, default=False, help="(requires --word_timestamps True) underline each word as it is spoken in srt and vtt")
|
||||||
|
|
||||||
|
# parser.add_argument("--word_timestamps", type=str2bool, default=False, help="(experimental) extract word-level timestamps and refine the results based on them")
|
||||||
|
# parser.add_argument("--prepend_punctuations", type=str, default="\"\'“¿([{-", help="if word_timestamps is True, merge these punctuation symbols with the next word")
|
||||||
|
# parser.add_argument("--append_punctuations", type=str, default="\"\'.。,,!!??::”)]}、", help="if word_timestamps is True, merge these punctuation symbols with the previous word")
|
||||||
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
|
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
|
||||||
|
|
||||||
parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face Access Token to access PyAnnote gated models")
|
parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face Access Token to access PyAnnote gated models")
|
||||||
@ -81,7 +76,7 @@ def cli():
|
|||||||
|
|
||||||
args = parser.parse_args().__dict__
|
args = parser.parse_args().__dict__
|
||||||
model_name: str = args.pop("model")
|
model_name: str = args.pop("model")
|
||||||
model_dir: str = args.pop("model_dir")
|
batch_size: int = args.pop("batch_size")
|
||||||
output_dir: str = args.pop("output_dir")
|
output_dir: str = args.pop("output_dir")
|
||||||
output_format: str = args.pop("output_format")
|
output_format: str = args.pop("output_format")
|
||||||
device: str = args.pop("device")
|
device: str = args.pop("device")
|
||||||
@ -93,13 +88,10 @@ def cli():
|
|||||||
os.makedirs(tmp_dir, exist_ok=True)
|
os.makedirs(tmp_dir, exist_ok=True)
|
||||||
|
|
||||||
align_model: str = args.pop("align_model")
|
align_model: str = args.pop("align_model")
|
||||||
align_extend: float = args.pop("align_extend")
|
|
||||||
align_from_prev: bool = args.pop("align_from_prev")
|
|
||||||
interpolate_method: str = args.pop("interpolate_method")
|
interpolate_method: str = args.pop("interpolate_method")
|
||||||
no_align: bool = args.pop("no_align")
|
no_align: bool = args.pop("no_align")
|
||||||
|
|
||||||
hf_token: str = args.pop("hf_token")
|
hf_token: str = args.pop("hf_token")
|
||||||
vad_filter: bool = args.pop("vad_filter")
|
|
||||||
vad_onset: float = args.pop("vad_onset")
|
vad_onset: float = args.pop("vad_onset")
|
||||||
vad_offset: float = args.pop("vad_offset")
|
vad_offset: float = args.pop("vad_offset")
|
||||||
|
|
||||||
@ -107,18 +99,7 @@ def cli():
|
|||||||
min_speakers: int = args.pop("min_speakers")
|
min_speakers: int = args.pop("min_speakers")
|
||||||
max_speakers: int = args.pop("max_speakers")
|
max_speakers: int = args.pop("max_speakers")
|
||||||
|
|
||||||
if vad_filter:
|
# TODO: check model loading works.
|
||||||
from pyannote.audio import Pipeline
|
|
||||||
from pyannote.audio import Model, Pipeline
|
|
||||||
vad_model = load_vad_model(torch.device(device), vad_onset, vad_offset, use_auth_token=hf_token)
|
|
||||||
else:
|
|
||||||
vad_model = None
|
|
||||||
|
|
||||||
# if model_flush:
|
|
||||||
# print(">>Model flushing activated... Only loading model after ASR stage")
|
|
||||||
# del align_model
|
|
||||||
# align_model = ""
|
|
||||||
|
|
||||||
|
|
||||||
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
|
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
|
||||||
if args["language"] is not None:
|
if args["language"] is not None:
|
||||||
@ -136,39 +117,43 @@ def cli():
|
|||||||
if (threads := args.pop("threads")) > 0:
|
if (threads := args.pop("threads")) > 0:
|
||||||
torch.set_num_threads(threads)
|
torch.set_num_threads(threads)
|
||||||
|
|
||||||
from whisper import load_model
|
asr_options = {
|
||||||
|
"beam_size": args.pop("beam_size"),
|
||||||
|
"patience": args.pop("patience"),
|
||||||
|
"length_penalty": args.pop("length_penalty"),
|
||||||
|
"temperatures": temperature,
|
||||||
|
"compression_ratio_threshold": args.pop("compression_ratio_threshold"),
|
||||||
|
"log_prob_threshold": args.pop("logprob_threshold"),
|
||||||
|
"no_speech_threshold": args.pop("no_speech_threshold"),
|
||||||
|
"condition_on_previous_text": False,
|
||||||
|
"initial_prompt": args.pop("initial_prompt"),
|
||||||
|
}
|
||||||
|
|
||||||
writer = get_writer(output_format, output_dir)
|
writer = get_writer(output_format, output_dir)
|
||||||
|
word_options = ["highlight_words", "max_line_count", "max_line_width"]
|
||||||
|
if no_align:
|
||||||
|
for option in word_options:
|
||||||
|
if args[option]:
|
||||||
|
parser.error(f"--{option} requires --word_timestamps True")
|
||||||
|
if args["max_line_count"] and not args["max_line_width"]:
|
||||||
|
warnings.warn("--max_line_count has no effect without --max_line_width")
|
||||||
|
writer_args = {arg: args.pop(arg) for arg in word_options}
|
||||||
|
|
||||||
# Part 1: VAD & ASR Loop
|
# Part 1: VAD & ASR Loop
|
||||||
results = []
|
results = []
|
||||||
tmp_results = []
|
tmp_results = []
|
||||||
model = load_model(model_name, device=device, download_root=model_dir)
|
# model = load_model(model_name, device=device, download_root=model_dir)
|
||||||
for audio_path in args.pop("audio"):
|
model = load_model(model_name, device=device, language=args['language'], asr_options=asr_options, vad_options={"vad_onset": vad_onset, "vad_offset": vad_offset},)
|
||||||
input_audio_path = audio_path
|
|
||||||
tfile = None
|
|
||||||
|
|
||||||
|
for audio_path in args.pop("audio"):
|
||||||
|
audio = load_audio(audio_path)
|
||||||
# >> VAD & ASR
|
# >> VAD & ASR
|
||||||
if vad_model is not None:
|
print(">>Performing transcription...")
|
||||||
if not audio_path.endswith(".wav"):
|
result = model.transcribe(audio, batch_size=batch_size)
|
||||||
print(">>VAD requires .wav format, converting to wav as a tempfile...")
|
results.append((result, audio_path))
|
||||||
audio_basename = os.path.splitext(os.path.basename(audio_path))[0]
|
|
||||||
if tmp_dir is not None:
|
|
||||||
input_audio_path = os.path.join(tmp_dir, audio_basename + ".wav")
|
|
||||||
else:
|
|
||||||
input_audio_path = os.path.join(os.path.dirname(audio_path), audio_basename + ".wav")
|
|
||||||
ffmpeg.input(audio_path, threads=0).output(input_audio_path, ac=1, ar=SAMPLE_RATE).run(cmd=["ffmpeg"])
|
|
||||||
print(">>Performing VAD...")
|
|
||||||
result = transcribe_with_vad(model, input_audio_path, vad_model, temperature=temperature, **args)
|
|
||||||
else:
|
|
||||||
print(">>Performing transcription...")
|
|
||||||
result = transcribe(model, input_audio_path, temperature=temperature, **args)
|
|
||||||
|
|
||||||
results.append((result, input_audio_path))
|
|
||||||
|
|
||||||
# Unload Whisper and VAD
|
# Unload Whisper and VAD
|
||||||
del model
|
del model
|
||||||
del vad_model
|
|
||||||
gc.collect()
|
gc.collect()
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
@ -178,17 +163,22 @@ def cli():
|
|||||||
results = []
|
results = []
|
||||||
align_language = args["language"] if args["language"] is not None else "en" # default to loading english if not specified
|
align_language = args["language"] if args["language"] is not None else "en" # default to loading english if not specified
|
||||||
align_model, align_metadata = load_align_model(align_language, device, model_name=align_model)
|
align_model, align_metadata = load_align_model(align_language, device, model_name=align_model)
|
||||||
for result, input_audio_path in tmp_results:
|
for result, audio_path in tmp_results:
|
||||||
# >> Align
|
# >> Align
|
||||||
|
if len(tmp_results) > 1:
|
||||||
|
input_audio = audio_path
|
||||||
|
else:
|
||||||
|
# lazily load audio from part 1
|
||||||
|
input_audio = audio
|
||||||
|
|
||||||
if align_model is not None and len(result["segments"]) > 0:
|
if align_model is not None and len(result["segments"]) > 0:
|
||||||
if result.get("language", "en") != align_metadata["language"]:
|
if result.get("language", "en") != align_metadata["language"]:
|
||||||
# load new language
|
# load new language
|
||||||
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
|
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
|
||||||
align_model, align_metadata = load_align_model(result["language"], device)
|
align_model, align_metadata = load_align_model(result["language"], device)
|
||||||
print(">>Performing alignment...")
|
print(">>Performing alignment...")
|
||||||
result = align(result["segments"], align_model, align_metadata, input_audio_path, device,
|
result = align(result["segments"], align_model, align_metadata, input_audio, device, interpolate_method=interpolate_method)
|
||||||
extend_duration=align_extend, start_from_previous=align_from_prev, interpolate_method=interpolate_method)
|
results.append((result, audio_path))
|
||||||
results.append((result, input_audio_path))
|
|
||||||
|
|
||||||
# Unload align model
|
# Unload align model
|
||||||
del align_model
|
del align_model
|
||||||
@ -210,11 +200,7 @@ def cli():
|
|||||||
|
|
||||||
# >> Write
|
# >> Write
|
||||||
for result, audio_path in results:
|
for result, audio_path in results:
|
||||||
writer(result, audio_path)
|
writer(result, audio_path, writer_args)
|
||||||
|
|
||||||
# cleanup
|
|
||||||
if input_audio_path != audio_path:
|
|
||||||
os.remove(input_audio_path)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
cli()
|
cli()
|
@ -1,280 +1,301 @@
|
|||||||
|
import json
|
||||||
import os
|
import os
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
import zlib
|
import zlib
|
||||||
from typing import Callable, TextIO, Iterator, Tuple
|
from typing import Callable, Optional, TextIO
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
def interpolate_nans(x, method='nearest'):
|
LANGUAGES = {
|
||||||
if x.notnull().sum() > 1:
|
"en": "english",
|
||||||
return x.interpolate(method=method).ffill().bfill()
|
"zh": "chinese",
|
||||||
|
"de": "german",
|
||||||
|
"es": "spanish",
|
||||||
|
"ru": "russian",
|
||||||
|
"ko": "korean",
|
||||||
|
"fr": "french",
|
||||||
|
"ja": "japanese",
|
||||||
|
"pt": "portuguese",
|
||||||
|
"tr": "turkish",
|
||||||
|
"pl": "polish",
|
||||||
|
"ca": "catalan",
|
||||||
|
"nl": "dutch",
|
||||||
|
"ar": "arabic",
|
||||||
|
"sv": "swedish",
|
||||||
|
"it": "italian",
|
||||||
|
"id": "indonesian",
|
||||||
|
"hi": "hindi",
|
||||||
|
"fi": "finnish",
|
||||||
|
"vi": "vietnamese",
|
||||||
|
"he": "hebrew",
|
||||||
|
"uk": "ukrainian",
|
||||||
|
"el": "greek",
|
||||||
|
"ms": "malay",
|
||||||
|
"cs": "czech",
|
||||||
|
"ro": "romanian",
|
||||||
|
"da": "danish",
|
||||||
|
"hu": "hungarian",
|
||||||
|
"ta": "tamil",
|
||||||
|
"no": "norwegian",
|
||||||
|
"th": "thai",
|
||||||
|
"ur": "urdu",
|
||||||
|
"hr": "croatian",
|
||||||
|
"bg": "bulgarian",
|
||||||
|
"lt": "lithuanian",
|
||||||
|
"la": "latin",
|
||||||
|
"mi": "maori",
|
||||||
|
"ml": "malayalam",
|
||||||
|
"cy": "welsh",
|
||||||
|
"sk": "slovak",
|
||||||
|
"te": "telugu",
|
||||||
|
"fa": "persian",
|
||||||
|
"lv": "latvian",
|
||||||
|
"bn": "bengali",
|
||||||
|
"sr": "serbian",
|
||||||
|
"az": "azerbaijani",
|
||||||
|
"sl": "slovenian",
|
||||||
|
"kn": "kannada",
|
||||||
|
"et": "estonian",
|
||||||
|
"mk": "macedonian",
|
||||||
|
"br": "breton",
|
||||||
|
"eu": "basque",
|
||||||
|
"is": "icelandic",
|
||||||
|
"hy": "armenian",
|
||||||
|
"ne": "nepali",
|
||||||
|
"mn": "mongolian",
|
||||||
|
"bs": "bosnian",
|
||||||
|
"kk": "kazakh",
|
||||||
|
"sq": "albanian",
|
||||||
|
"sw": "swahili",
|
||||||
|
"gl": "galician",
|
||||||
|
"mr": "marathi",
|
||||||
|
"pa": "punjabi",
|
||||||
|
"si": "sinhala",
|
||||||
|
"km": "khmer",
|
||||||
|
"sn": "shona",
|
||||||
|
"yo": "yoruba",
|
||||||
|
"so": "somali",
|
||||||
|
"af": "afrikaans",
|
||||||
|
"oc": "occitan",
|
||||||
|
"ka": "georgian",
|
||||||
|
"be": "belarusian",
|
||||||
|
"tg": "tajik",
|
||||||
|
"sd": "sindhi",
|
||||||
|
"gu": "gujarati",
|
||||||
|
"am": "amharic",
|
||||||
|
"yi": "yiddish",
|
||||||
|
"lo": "lao",
|
||||||
|
"uz": "uzbek",
|
||||||
|
"fo": "faroese",
|
||||||
|
"ht": "haitian creole",
|
||||||
|
"ps": "pashto",
|
||||||
|
"tk": "turkmen",
|
||||||
|
"nn": "nynorsk",
|
||||||
|
"mt": "maltese",
|
||||||
|
"sa": "sanskrit",
|
||||||
|
"lb": "luxembourgish",
|
||||||
|
"my": "myanmar",
|
||||||
|
"bo": "tibetan",
|
||||||
|
"tl": "tagalog",
|
||||||
|
"mg": "malagasy",
|
||||||
|
"as": "assamese",
|
||||||
|
"tt": "tatar",
|
||||||
|
"haw": "hawaiian",
|
||||||
|
"ln": "lingala",
|
||||||
|
"ha": "hausa",
|
||||||
|
"ba": "bashkir",
|
||||||
|
"jw": "javanese",
|
||||||
|
"su": "sundanese",
|
||||||
|
}
|
||||||
|
|
||||||
|
# language code lookup by name, with a few language aliases
|
||||||
|
TO_LANGUAGE_CODE = {
|
||||||
|
**{language: code for code, language in LANGUAGES.items()},
|
||||||
|
"burmese": "my",
|
||||||
|
"valencian": "ca",
|
||||||
|
"flemish": "nl",
|
||||||
|
"haitian": "ht",
|
||||||
|
"letzeburgesch": "lb",
|
||||||
|
"pushto": "ps",
|
||||||
|
"panjabi": "pa",
|
||||||
|
"moldavian": "ro",
|
||||||
|
"moldovan": "ro",
|
||||||
|
"sinhalese": "si",
|
||||||
|
"castilian": "es",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
system_encoding = sys.getdefaultencoding()
|
||||||
|
|
||||||
|
if system_encoding != "utf-8":
|
||||||
|
|
||||||
|
def make_safe(string):
|
||||||
|
# replaces any character not representable using the system default encoding with an '?',
|
||||||
|
# avoiding UnicodeEncodeError (https://github.com/openai/whisper/discussions/729).
|
||||||
|
return string.encode(system_encoding, errors="replace").decode(system_encoding)
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
def make_safe(string):
|
||||||
|
# utf-8 can encode any Unicode code point, so no need to do the round-trip encoding
|
||||||
|
return string
|
||||||
|
|
||||||
|
|
||||||
|
def exact_div(x, y):
|
||||||
|
assert x % y == 0
|
||||||
|
return x // y
|
||||||
|
|
||||||
|
|
||||||
|
def str2bool(string):
|
||||||
|
str2val = {"True": True, "False": False}
|
||||||
|
if string in str2val:
|
||||||
|
return str2val[string]
|
||||||
else:
|
else:
|
||||||
return x.ffill().bfill()
|
raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
|
||||||
|
|
||||||
|
|
||||||
def write_txt(transcript: Iterator[dict], file: TextIO):
|
|
||||||
for segment in transcript:
|
|
||||||
print(segment['text'].strip(), file=file, flush=True)
|
|
||||||
|
|
||||||
|
|
||||||
def write_vtt(transcript: Iterator[dict], file: TextIO):
|
def optional_int(string):
|
||||||
print("WEBVTT\n", file=file)
|
return None if string == "None" else int(string)
|
||||||
for segment in transcript:
|
|
||||||
print(
|
|
||||||
f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
|
def optional_float(string):
|
||||||
f"{segment['text'].strip().replace('-->', '->')}\n",
|
return None if string == "None" else float(string)
|
||||||
file=file,
|
|
||||||
flush=True,
|
|
||||||
|
def compression_ratio(text) -> float:
|
||||||
|
text_bytes = text.encode("utf-8")
|
||||||
|
return len(text_bytes) / len(zlib.compress(text_bytes))
|
||||||
|
|
||||||
|
|
||||||
|
def format_timestamp(
|
||||||
|
seconds: float, always_include_hours: bool = False, decimal_marker: str = "."
|
||||||
|
):
|
||||||
|
assert seconds >= 0, "non-negative timestamp expected"
|
||||||
|
milliseconds = round(seconds * 1000.0)
|
||||||
|
|
||||||
|
hours = milliseconds // 3_600_000
|
||||||
|
milliseconds -= hours * 3_600_000
|
||||||
|
|
||||||
|
minutes = milliseconds // 60_000
|
||||||
|
milliseconds -= minutes * 60_000
|
||||||
|
|
||||||
|
seconds = milliseconds // 1_000
|
||||||
|
milliseconds -= seconds * 1_000
|
||||||
|
|
||||||
|
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
||||||
|
return (
|
||||||
|
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class ResultWriter:
|
||||||
|
extension: str
|
||||||
|
|
||||||
|
def __init__(self, output_dir: str):
|
||||||
|
self.output_dir = output_dir
|
||||||
|
|
||||||
|
def __call__(self, result: dict, audio_path: str, options: dict):
|
||||||
|
audio_basename = os.path.basename(audio_path)
|
||||||
|
audio_basename = os.path.splitext(audio_basename)[0]
|
||||||
|
output_path = os.path.join(
|
||||||
|
self.output_dir, audio_basename + "." + self.extension
|
||||||
)
|
)
|
||||||
|
|
||||||
def write_tsv(transcript: Iterator[dict], file: TextIO):
|
with open(output_path, "w", encoding="utf-8") as f:
|
||||||
print("start", "end", "text", sep="\t", file=file)
|
self.write_result(result, file=f, options=options)
|
||||||
for segment in transcript:
|
|
||||||
print(segment['start'], file=file, end="\t")
|
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||||
print(segment['end'], file=file, end="\t")
|
raise NotImplementedError
|
||||||
print(segment['text'].strip().replace("\t", " "), file=file, flush=True)
|
|
||||||
|
|
||||||
|
|
||||||
def write_srt(transcript: Iterator[dict], file: TextIO):
|
class WriteTXT(ResultWriter):
|
||||||
"""
|
extension: str = "txt"
|
||||||
Write a transcript to a file in SRT format.
|
|
||||||
|
|
||||||
Example usage:
|
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||||
from pathlib import Path
|
for segment in result["segments"]:
|
||||||
from whisper.utils import write_srt
|
print(segment["text"].strip(), file=file, flush=True)
|
||||||
|
|
||||||
result = transcribe(model, audio_path, temperature=temperature, **args)
|
|
||||||
|
|
||||||
# save SRT
|
|
||||||
audio_basename = Path(audio_path).stem
|
|
||||||
with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt:
|
|
||||||
write_srt(result["segments"], file=srt)
|
|
||||||
"""
|
|
||||||
for i, segment in enumerate(transcript, start=1):
|
|
||||||
# write srt lines
|
|
||||||
print(
|
|
||||||
f"{i}\n"
|
|
||||||
f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> "
|
|
||||||
f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n"
|
|
||||||
f"{segment['text'].strip().replace('-->', '->')}\n",
|
|
||||||
file=file,
|
|
||||||
flush=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def write_ass(transcript: Iterator[dict],
|
class SubtitlesWriter(ResultWriter):
|
||||||
file: TextIO,
|
always_include_hours: bool
|
||||||
resolution: str = "word",
|
decimal_marker: str
|
||||||
color: str = None, underline=True,
|
|
||||||
prefmt: str = None, suffmt: str = None,
|
|
||||||
font: str = None, font_size: int = 24,
|
|
||||||
strip=True, **kwargs):
|
|
||||||
"""
|
|
||||||
Credit: https://github.com/jianfch/stable-ts/blob/ff79549bd01f764427879f07ecd626c46a9a430a/stable_whisper/text_output.py
|
|
||||||
Generate Advanced SubStation Alpha (ass) file from results to
|
|
||||||
display both phrase-level & word-level timestamp simultaneously by:
|
|
||||||
-using segment-level timestamps display phrases as usual
|
|
||||||
-using word-level timestamps change formats (e.g. color/underline) of the word in the displayed segment
|
|
||||||
Note: ass file is used in the same way as srt, vtt, etc.
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
transcript: dict
|
|
||||||
results from modified model
|
|
||||||
file: TextIO
|
|
||||||
file object to write to
|
|
||||||
resolution: str
|
|
||||||
"word" or "char", timestamp resolution to highlight.
|
|
||||||
color: str
|
|
||||||
color code for a word at its corresponding timestamp
|
|
||||||
<bbggrr> reverse order hexadecimal RGB value (e.g. FF0000 is full intensity blue. Default: 00FF00)
|
|
||||||
underline: bool
|
|
||||||
whether to underline a word at its corresponding timestamp
|
|
||||||
prefmt: str
|
|
||||||
used to specify format for word-level timestamps (must be use with 'suffmt' and overrides 'color'&'underline')
|
|
||||||
appears as such in the .ass file:
|
|
||||||
Hi, {<prefmt>}how{<suffmt>} are you?
|
|
||||||
reference [Appendix A: Style override codes] in http://www.tcax.org/docs/ass-specs.htm
|
|
||||||
suffmt: str
|
|
||||||
used to specify format for word-level timestamps (must be use with 'prefmt' and overrides 'color'&'underline')
|
|
||||||
appears as such in the .ass file:
|
|
||||||
Hi, {<prefmt>}how{<suffmt>} are you?
|
|
||||||
reference [Appendix A: Style override codes] in http://www.tcax.org/docs/ass-specs.htm
|
|
||||||
font: str
|
|
||||||
word font (default: Arial)
|
|
||||||
font_size: int
|
|
||||||
word font size (default: 48)
|
|
||||||
kwargs:
|
|
||||||
used for format styles:
|
|
||||||
'Name', 'Fontname', 'Fontsize', 'PrimaryColour', 'SecondaryColour', 'OutlineColour', 'BackColour', 'Bold',
|
|
||||||
'Italic', 'Underline', 'StrikeOut', 'ScaleX', 'ScaleY', 'Spacing', 'Angle', 'BorderStyle', 'Outline',
|
|
||||||
'Shadow', 'Alignment', 'MarginL', 'MarginR', 'MarginV', 'Encoding'
|
|
||||||
|
|
||||||
"""
|
def iterate_result(self, result: dict, options: dict):
|
||||||
|
raw_max_line_width: Optional[int] = options["max_line_width"]
|
||||||
|
max_line_count: Optional[int] = options["max_line_count"]
|
||||||
|
highlight_words: bool = options["highlight_words"]
|
||||||
|
max_line_width = 1000 if raw_max_line_width is None else raw_max_line_width
|
||||||
|
preserve_segments = max_line_count is None or raw_max_line_width is None
|
||||||
|
|
||||||
fmt_style_dict = {'Name': 'Default', 'Fontname': 'Arial', 'Fontsize': '48', 'PrimaryColour': '&Hffffff',
|
def iterate_subtitles():
|
||||||
'SecondaryColour': '&Hffffff', 'OutlineColour': '&H0', 'BackColour': '&H0', 'Bold': '0',
|
line_len = 0
|
||||||
'Italic': '0', 'Underline': '0', 'StrikeOut': '0', 'ScaleX': '100', 'ScaleY': '100',
|
line_count = 1
|
||||||
'Spacing': '0', 'Angle': '0', 'BorderStyle': '1', 'Outline': '1', 'Shadow': '0',
|
# the next subtitle to yield (a list of word timings with whitespace)
|
||||||
'Alignment': '2', 'MarginL': '10', 'MarginR': '10', 'MarginV': '10', 'Encoding': '0'}
|
subtitle: list[dict] = []
|
||||||
|
last = result["segments"][0]["words"][0]["start"]
|
||||||
|
for segment in result["segments"]:
|
||||||
|
for i, original_timing in enumerate(segment["words"]):
|
||||||
|
timing = original_timing.copy()
|
||||||
|
long_pause = not preserve_segments and timing["start"] - last > 3.0
|
||||||
|
has_room = line_len + len(timing["word"]) <= max_line_width
|
||||||
|
seg_break = i == 0 and len(subtitle) > 0 and preserve_segments
|
||||||
|
if line_len > 0 and has_room and not long_pause and not seg_break:
|
||||||
|
# line continuation
|
||||||
|
line_len += len(timing["word"])
|
||||||
|
else:
|
||||||
|
# new line
|
||||||
|
timing["word"] = timing["word"].strip()
|
||||||
|
if (
|
||||||
|
len(subtitle) > 0
|
||||||
|
and max_line_count is not None
|
||||||
|
and (long_pause or line_count >= max_line_count)
|
||||||
|
or seg_break
|
||||||
|
):
|
||||||
|
# subtitle break
|
||||||
|
yield subtitle
|
||||||
|
subtitle = []
|
||||||
|
line_count = 1
|
||||||
|
elif line_len > 0:
|
||||||
|
# line break
|
||||||
|
line_count += 1
|
||||||
|
timing["word"] = "\n" + timing["word"]
|
||||||
|
line_len = len(timing["word"].strip())
|
||||||
|
subtitle.append(timing)
|
||||||
|
last = timing["start"]
|
||||||
|
if len(subtitle) > 0:
|
||||||
|
yield subtitle
|
||||||
|
|
||||||
for k, v in filter(lambda x: 'colour' in x[0].lower() and not str(x[1]).startswith('&H'), kwargs.items()):
|
if "words" in result["segments"][0]:
|
||||||
kwargs[k] = f'&H{kwargs[k]}'
|
for subtitle in iterate_subtitles():
|
||||||
|
subtitle_start = self.format_timestamp(subtitle[0]["start"])
|
||||||
|
subtitle_end = self.format_timestamp(subtitle[-1]["end"])
|
||||||
|
subtitle_text = "".join([word["word"] for word in subtitle])
|
||||||
|
if highlight_words:
|
||||||
|
last = subtitle_start
|
||||||
|
all_words = [timing["word"] for timing in subtitle]
|
||||||
|
for i, this_word in enumerate(subtitle):
|
||||||
|
start = self.format_timestamp(this_word["start"])
|
||||||
|
end = self.format_timestamp(this_word["end"])
|
||||||
|
if last != start:
|
||||||
|
yield last, start, subtitle_text
|
||||||
|
|
||||||
fmt_style_dict.update((k, v) for k, v in kwargs.items() if k in fmt_style_dict)
|
yield start, end, "".join(
|
||||||
|
[
|
||||||
if font:
|
re.sub(r"^(\s*)(.*)$", r"\1<u>\2</u>", word)
|
||||||
fmt_style_dict.update(Fontname=font)
|
if j == i
|
||||||
if font_size:
|
else word
|
||||||
fmt_style_dict.update(Fontsize=font_size)
|
for j, word in enumerate(all_words)
|
||||||
|
]
|
||||||
fmts = f'Format: {", ".join(map(str, fmt_style_dict.keys()))}'
|
)
|
||||||
|
last = end
|
||||||
styles = f'Style: {",".join(map(str, fmt_style_dict.values()))}'
|
else:
|
||||||
|
yield subtitle_start, subtitle_end, subtitle_text
|
||||||
ass_str = f'[Script Info]\nScriptType: v4.00+\nPlayResX: 384\nPlayResY: 288\nScaledBorderAndShadow: yes\n\n' \
|
|
||||||
f'[V4+ Styles]\n{fmts}\n{styles}\n\n' \
|
|
||||||
f'[Events]\nFormat: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text\n\n'
|
|
||||||
|
|
||||||
if prefmt or suffmt:
|
|
||||||
if suffmt:
|
|
||||||
assert prefmt, 'prefmt must be used along with suffmt'
|
|
||||||
else:
|
else:
|
||||||
suffmt = r'\r'
|
for segment in result["segments"]:
|
||||||
else:
|
segment_start = self.format_timestamp(segment["start"])
|
||||||
if not color:
|
segment_end = self.format_timestamp(segment["end"])
|
||||||
color = 'HFF00'
|
segment_text = segment["text"].strip().replace("-->", "->")
|
||||||
underline_code = r'\u1' if underline else ''
|
|
||||||
|
|
||||||
prefmt = r'{\1c&' + f'{color.upper()}&{underline_code}' + '}'
|
|
||||||
suffmt = r'{\r}'
|
|
||||||
|
|
||||||
def secs_to_hhmmss(secs: Tuple[float, int]):
|
|
||||||
mm, ss = divmod(secs, 60)
|
|
||||||
hh, mm = divmod(mm, 60)
|
|
||||||
return f'{hh:0>1.0f}:{mm:0>2.0f}:{ss:0>2.2f}'
|
|
||||||
|
|
||||||
|
|
||||||
def dialogue(chars: str, start: float, end: float, idx_0: int, idx_1: int) -> str:
|
|
||||||
if idx_0 == -1:
|
|
||||||
text = chars
|
|
||||||
else:
|
|
||||||
text = f'{chars[:idx_0]}{prefmt}{chars[idx_0:idx_1]}{suffmt}{chars[idx_1:]}'
|
|
||||||
return f"Dialogue: 0,{secs_to_hhmmss(start)},{secs_to_hhmmss(end)}," \
|
|
||||||
f"Default,,0,0,0,,{text.strip() if strip else text}"
|
|
||||||
|
|
||||||
if resolution == "word":
|
|
||||||
resolution_key = "word-segments"
|
|
||||||
elif resolution == "char":
|
|
||||||
resolution_key = "char-segments"
|
|
||||||
else:
|
|
||||||
raise ValueError(".ass resolution should be 'word' or 'char', not ", resolution)
|
|
||||||
|
|
||||||
ass_arr = []
|
|
||||||
|
|
||||||
for segment in transcript:
|
|
||||||
# if "12" in segment['text']:
|
|
||||||
# import pdb; pdb.set_trace()
|
|
||||||
if resolution_key in segment:
|
|
||||||
res_segs = pd.DataFrame(segment[resolution_key])
|
|
||||||
prev = segment['start']
|
|
||||||
if "speaker" in segment:
|
|
||||||
speaker_str = f"[{segment['speaker']}]: "
|
|
||||||
else:
|
|
||||||
speaker_str = ""
|
|
||||||
for cdx, crow in res_segs.iterrows():
|
|
||||||
if not np.isnan(crow['start']):
|
|
||||||
if resolution == "char":
|
|
||||||
idx_0 = cdx
|
|
||||||
idx_1 = cdx + 1
|
|
||||||
elif resolution == "word":
|
|
||||||
idx_0 = int(crow["segment-text-start"])
|
|
||||||
idx_1 = int(crow["segment-text-end"])
|
|
||||||
# fill gap
|
|
||||||
if crow['start'] > prev:
|
|
||||||
filler_ts = {
|
|
||||||
"chars": speaker_str + segment['text'],
|
|
||||||
"start": prev,
|
|
||||||
"end": crow['start'],
|
|
||||||
"idx_0": -1,
|
|
||||||
"idx_1": -1
|
|
||||||
}
|
|
||||||
|
|
||||||
ass_arr.append(filler_ts)
|
|
||||||
# highlight current word
|
|
||||||
f_word_ts = {
|
|
||||||
"chars": speaker_str + segment['text'],
|
|
||||||
"start": crow['start'],
|
|
||||||
"end": crow['end'],
|
|
||||||
"idx_0": idx_0 + len(speaker_str),
|
|
||||||
"idx_1": idx_1 + len(speaker_str)
|
|
||||||
}
|
|
||||||
ass_arr.append(f_word_ts)
|
|
||||||
prev = crow['end']
|
|
||||||
|
|
||||||
ass_str += '\n'.join(map(lambda x: dialogue(**x), ass_arr))
|
|
||||||
|
|
||||||
file.write(ass_str)
|
|
||||||
|
|
||||||
|
|
||||||
from whisper.utils import SubtitlesWriter, ResultWriter, WriteTXT, WriteVTT, WriteSRT, WriteTSV, WriteJSON, format_timestamp
|
|
||||||
|
|
||||||
class WriteASS(ResultWriter):
|
|
||||||
extension: str = "ass"
|
|
||||||
|
|
||||||
def write_result(self, result: dict, file: TextIO):
|
|
||||||
write_ass(result["segments"], file, resolution="word")
|
|
||||||
|
|
||||||
class WriteASSchar(ResultWriter):
|
|
||||||
extension: str = "ass"
|
|
||||||
|
|
||||||
def write_result(self, result: dict, file: TextIO):
|
|
||||||
write_ass(result["segments"], file, resolution="char")
|
|
||||||
|
|
||||||
class WritePickle(ResultWriter):
|
|
||||||
extension: str = "ass"
|
|
||||||
|
|
||||||
def write_result(self, result: dict, file: TextIO):
|
|
||||||
pd.DataFrame(result["segments"]).to_pickle(file)
|
|
||||||
|
|
||||||
class WriteSRTWord(ResultWriter):
|
|
||||||
extension: str = "word.srt"
|
|
||||||
always_include_hours: bool = True
|
|
||||||
decimal_marker: str = ","
|
|
||||||
|
|
||||||
def iterate_result(self, result: dict):
|
|
||||||
for segment in result["word_segments"]:
|
|
||||||
segment_start = self.format_timestamp(segment["start"])
|
|
||||||
segment_end = self.format_timestamp(segment["end"])
|
|
||||||
segment_text = segment["text"].strip().replace("-->", "->")
|
|
||||||
|
|
||||||
if word_timings := segment.get("words", None):
|
|
||||||
all_words = [timing["word"] for timing in word_timings]
|
|
||||||
all_words[0] = all_words[0].strip() # remove the leading space, if any
|
|
||||||
last = segment_start
|
|
||||||
for i, this_word in enumerate(word_timings):
|
|
||||||
start = self.format_timestamp(this_word["start"])
|
|
||||||
end = self.format_timestamp(this_word["end"])
|
|
||||||
if last != start:
|
|
||||||
yield last, start, segment_text
|
|
||||||
|
|
||||||
yield start, end, "".join(
|
|
||||||
[
|
|
||||||
f"<u>{word}</u>" if j == i else word
|
|
||||||
for j, word in enumerate(all_words)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
last = end
|
|
||||||
|
|
||||||
if last != segment_end:
|
|
||||||
yield last, segment_end, segment_text
|
|
||||||
else:
|
|
||||||
yield segment_start, segment_end, segment_text
|
yield segment_start, segment_end, segment_text
|
||||||
|
|
||||||
def write_result(self, result: dict, file: TextIO):
|
|
||||||
if "word_segments" not in result:
|
|
||||||
return
|
|
||||||
for i, (start, end, text) in enumerate(self.iterate_result(result), start=1):
|
|
||||||
print(f"{i}\n{start} --> {end}\n{text}\n", file=file, flush=True)
|
|
||||||
|
|
||||||
def format_timestamp(self, seconds: float):
|
def format_timestamp(self, seconds: float):
|
||||||
return format_timestamp(
|
return format_timestamp(
|
||||||
seconds=seconds,
|
seconds=seconds,
|
||||||
@ -282,36 +303,81 @@ class WriteSRTWord(ResultWriter):
|
|||||||
decimal_marker=self.decimal_marker,
|
decimal_marker=self.decimal_marker,
|
||||||
)
|
)
|
||||||
|
|
||||||
def get_writer(output_format: str, output_dir: str) -> Callable[[dict, TextIO], None]:
|
|
||||||
|
class WriteVTT(SubtitlesWriter):
|
||||||
|
extension: str = "vtt"
|
||||||
|
always_include_hours: bool = False
|
||||||
|
decimal_marker: str = "."
|
||||||
|
|
||||||
|
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||||
|
print("WEBVTT\n", file=file)
|
||||||
|
for start, end, text in self.iterate_result(result, options):
|
||||||
|
print(f"{start} --> {end}\n{text}\n", file=file, flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
class WriteSRT(SubtitlesWriter):
|
||||||
|
extension: str = "srt"
|
||||||
|
always_include_hours: bool = True
|
||||||
|
decimal_marker: str = ","
|
||||||
|
|
||||||
|
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||||
|
for i, (start, end, text) in enumerate(
|
||||||
|
self.iterate_result(result, options), start=1
|
||||||
|
):
|
||||||
|
print(f"{i}\n{start} --> {end}\n{text}\n", file=file, flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
class WriteTSV(ResultWriter):
|
||||||
|
"""
|
||||||
|
Write a transcript to a file in TSV (tab-separated values) format containing lines like:
|
||||||
|
<start time in integer milliseconds>\t<end time in integer milliseconds>\t<transcript text>
|
||||||
|
|
||||||
|
Using integer milliseconds as start and end times means there's no chance of interference from
|
||||||
|
an environment setting a language encoding that causes the decimal in a floating point number
|
||||||
|
to appear as a comma; also is faster and more efficient to parse & store, e.g., in C++.
|
||||||
|
"""
|
||||||
|
|
||||||
|
extension: str = "tsv"
|
||||||
|
|
||||||
|
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||||
|
print("start", "end", "text", sep="\t", file=file)
|
||||||
|
for segment in result["segments"]:
|
||||||
|
print(round(1000 * segment["start"]), file=file, end="\t")
|
||||||
|
print(round(1000 * segment["end"]), file=file, end="\t")
|
||||||
|
print(segment["text"].strip().replace("\t", " "), file=file, flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
class WriteJSON(ResultWriter):
|
||||||
|
extension: str = "json"
|
||||||
|
|
||||||
|
def write_result(self, result: dict, file: TextIO, options: dict):
|
||||||
|
json.dump(result, file)
|
||||||
|
|
||||||
|
|
||||||
|
def get_writer(
|
||||||
|
output_format: str, output_dir: str
|
||||||
|
) -> Callable[[dict, TextIO, dict], None]:
|
||||||
writers = {
|
writers = {
|
||||||
"txt": WriteTXT,
|
"txt": WriteTXT,
|
||||||
"vtt": WriteVTT,
|
"vtt": WriteVTT,
|
||||||
"srt": WriteSRT,
|
"srt": WriteSRT,
|
||||||
"tsv": WriteTSV,
|
"tsv": WriteTSV,
|
||||||
"ass": WriteASS,
|
"json": WriteJSON,
|
||||||
"srt-word": WriteSRTWord,
|
|
||||||
# "ass-char": WriteASSchar,
|
|
||||||
# "pickle": WritePickle,
|
|
||||||
# "json": WriteJSON,
|
|
||||||
}
|
|
||||||
|
|
||||||
writers_other = {
|
|
||||||
"pkl": WritePickle,
|
|
||||||
"ass-char": WriteASSchar
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if output_format == "all":
|
if output_format == "all":
|
||||||
all_writers = [writer(output_dir) for writer in writers.values()]
|
all_writers = [writer(output_dir) for writer in writers.values()]
|
||||||
|
|
||||||
def write_all(result: dict, file: TextIO):
|
def write_all(result: dict, file: TextIO, options: dict):
|
||||||
for writer in all_writers:
|
for writer in all_writers:
|
||||||
writer(result, file)
|
writer(result, file, options)
|
||||||
|
|
||||||
return write_all
|
return write_all
|
||||||
|
|
||||||
if output_format in writers:
|
return writers[output_format](output_dir)
|
||||||
return writers[output_format](output_dir)
|
|
||||||
elif output_format in writers_other:
|
def interpolate_nans(x, method='nearest'):
|
||||||
return writers_other[output_format](output_dir)
|
if x.notnull().sum() > 1:
|
||||||
|
return x.interpolate(method=method).ffill().bfill()
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Output format '{output_format}' not supported, choose from {writers.keys()} and {writers_other.keys()}")
|
return x.ffill().bfill()
|
@ -1,22 +1,23 @@
|
|||||||
|
import hashlib
|
||||||
import os
|
import os
|
||||||
import urllib
|
import urllib
|
||||||
import pandas as pd
|
from typing import Callable, Optional, Text, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
import torch
|
import torch
|
||||||
import hashlib
|
|
||||||
from tqdm import tqdm
|
|
||||||
from typing import Optional, Callable, Union, Text
|
|
||||||
from pyannote.audio.core.io import AudioFile
|
|
||||||
from pyannote.core import Annotation, Segment, SlidingWindowFeature
|
|
||||||
from pyannote.audio.pipelines.utils import PipelineModel
|
|
||||||
from pyannote.audio import Model
|
from pyannote.audio import Model
|
||||||
|
from pyannote.audio.core.io import AudioFile
|
||||||
from pyannote.audio.pipelines import VoiceActivityDetection
|
from pyannote.audio.pipelines import VoiceActivityDetection
|
||||||
|
from pyannote.audio.pipelines.utils import PipelineModel
|
||||||
|
from pyannote.core import Annotation, Segment, SlidingWindowFeature
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
from .diarize import Segment as SegmentX
|
from .diarize import Segment as SegmentX
|
||||||
from typing import List, Tuple, Optional
|
|
||||||
|
|
||||||
VAD_SEGMENTATION_URL = "https://whisperx.s3.eu-west-2.amazonaws.com/model_weights/segmentation/0b5b3216d60a2d32fc086b47ea8c67589aaeb26b7e07fcbe620d6d0b83e209ea/pytorch_model.bin"
|
VAD_SEGMENTATION_URL = "https://whisperx.s3.eu-west-2.amazonaws.com/model_weights/segmentation/0b5b3216d60a2d32fc086b47ea8c67589aaeb26b7e07fcbe620d6d0b83e209ea/pytorch_model.bin"
|
||||||
|
|
||||||
def load_vad_model(device, vad_onset, vad_offset, use_auth_token=None, model_fp=None):
|
def load_vad_model(device, vad_onset=0.500, vad_offset=0.363, use_auth_token=None, model_fp=None):
|
||||||
model_dir = torch.hub._get_torch_home()
|
model_dir = torch.hub._get_torch_home()
|
||||||
os.makedirs(model_dir, exist_ok = True)
|
os.makedirs(model_dir, exist_ok = True)
|
||||||
if model_fp is None:
|
if model_fp is None:
|
||||||
|
Reference in New Issue
Block a user