diff --git a/README.md b/README.md
index 2bffa43..b5b95c5 100644
--- a/README.md
+++ b/README.md
@@ -32,7 +32,7 @@
-
Whisper-Based Automatic Speech Recognition (ASR) with improved timestamp accuracy using forced alignment.
+
Whisper-Based Automatic Speech Recognition (ASR) with improved timestamp accuracy + quality via forced phoneme alignment and speech-activity batching.
@@ -52,6 +52,7 @@ This repository refines the timestamps of openAI's Whisper model via forced alig
New🚨
+- v3 released, 70x speed-up open-sourced. Using batched whisper with [faster-whisper](https://github.com/guillaumekln/faster-whisper) backend!
- v2 released, code cleanup, imports whisper library, batched inference from paper not included (contact for licensing / batched model API). VAD filtering is now turned on by default, as in the paper.
- Paper drop🎓👨🏫! Please see our [ArxiV preprint](https://arxiv.org/abs/2303.00747) for benchmarking and details of WhisperX. We also introduce more efficient batch inference resulting in large-v2 with *60-70x REAL TIME speed (not provided in this repo).
- VAD filtering: Voice Activity Detection (VAD) from [Pyannote.audio](https://huggingface.co/pyannote/voice-activity-detection) is used as a preprocessing step to remove reliance on whisper timestamps and only transcribe audio segments containing speech. add `--vad_filter True` flag, increases timestamp accuracy and robustness (requires more GPU mem due to 30s inputs in wav2vec2)
@@ -60,7 +61,25 @@ This repository refines the timestamps of openAI's Whisper model via forced alig
Setup ⚙️
-Install this package using
+Tested for PyTorch 0.11, Python 3.8 (use other versions at your own risk!)
+
+GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be installed on the system. Please refer to the [CTranslate2 documentation](https://opennmt.net/CTranslate2/installation.html).
+
+
+### 1. Create Python3.8 environment
+
+`conda create --name whisperx python=3.8`
+
+`conda activate whisperx`
+
+
+### 2. Install PyTorch 0.11.0, e.g. for Linux and Windows:
+
+`conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch`
+
+See other methods [here.](https://pytorch.org/get-started/previous-versions/#wheel-4)
+
+### 3. Install this repo
`pip install git+https://github.com/m-bain/whisperx.git`
@@ -78,13 +97,6 @@ $ pip install -e .
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
-### Setup not working???
-Safest to use install pytorch as follows (for gpu)
-
-`conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 -c pytorch
-`
-
-
### Speaker Diarization
To **enable Speaker. Diarization**, include your Hugging Face access token that you can generate from [Here](https://huggingface.co/settings/tokens) after the `--hf_token` argument and accept the user agreement for the following models: [Segmentation](https://huggingface.co/pyannote/segmentation) , [Voice Activity Detection (VAD)](https://huggingface.co/pyannote/voice-activity-detection) , and [Speaker Diarization](https://huggingface.co/pyannote/speaker-diarization)
@@ -130,14 +142,15 @@ See more examples in other languages [here](EXAMPLES.md).
```python
import whisperx
-import whisper
device = "cuda"
audio_file = "audio.mp3"
# transcribe with original whisper
-model = whisper.load_model("large", device)
-result = model.transcribe(audio_file)
+model = whisperx.load_model("large-v2", device)
+
+audio = whisperx.load_audio(audio_file)
+result = model.transcribe(audio, batch_size=8)
print(result["segments"]) # before alignment
@@ -145,7 +158,7 @@ print(result["segments"]) # before alignment
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
# align whisper output
-result_aligned = whisperx.align(result["segments"], model_a, metadata, audio_file, device)
+result_aligned = whisperx.align(result["segments"], model_a, metadata, audio, device)
print(result_aligned["segments"]) # after alignment
print(result_aligned["word_segments"]) # after alignment
@@ -186,9 +199,15 @@ The next major upgrade we are working on is whisper with speaker diarization, so
* [x] Incorporating speaker diarization
-* [ ] Automatic .wav conversion to make VAD compatible
+* [x] Model flush, for low gpu mem resources
-* [ ] Model flush, for low gpu mem resources
+* [x] Faster-whisper backend
+
+* [ ] Add benchmarking code (TEDLIUM for spd/WER & word segmentation)
+
+* [ ] Allow silero-vad as alternative VAD option
+
+* [ ] Add max-line etc. see (openai's whisper utils.py)
* [ ] Improve diarization (word level). *Harder than first thought...*
@@ -205,10 +224,13 @@ Contact maxhbain@gmail.com for queries and licensing / early access to a model A
This work, and my PhD, is supported by the [VGG (Visual Geometry Group)](https://www.robots.ox.ac.uk/~vgg/) and the University of Oxford.
-
Of course, this is builds on [openAI's whisper](https://github.com/openai/whisper).
And borrows important alignment code from [PyTorch tutorial on forced alignment](https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html)
+Valuable VAD & Diarization Models from (pyannote.audio)[https://github.com/pyannote/pyannote-audio]
+
+Great backend from (faster-whisper)[https://github.com/guillaumekln/faster-whisper] and (CTranslate2)[https://github.com/OpenNMT/CTranslate2]
+
Citation
If you use this in your research, please cite the paper:
@@ -220,37 +242,4 @@ If you use this in your research, please cite the paper:
journal={arXiv preprint, arXiv:2303.00747},
year={2023}
}
-```
-
-as well the following works, used in each stage of the pipeline:
-
-```bibtex
-@article{radford2022robust,
- title={Robust speech recognition via large-scale weak supervision},
- author={Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
- journal={arXiv preprint arXiv:2212.04356},
- year={2022}
-}
-```
-
-```bibtex
-@article{baevski2020wav2vec,
- title={wav2vec 2.0: A framework for self-supervised learning of speech representations},
- author={Baevski, Alexei and Zhou, Yuhao and Mohamed, Abdelrahman and Auli, Michael},
- journal={Advances in neural information processing systems},
- volume={33},
- pages={12449--12460},
- year={2020}
-}
-```
-
-```bibtex
-@inproceedings{bredin2020pyannote,
- title={Pyannote. audio: neural building blocks for speaker diarization},
- author={Bredin, Herv{\'e} and Yin, Ruiqing and Coria, Juan Manuel and Gelly, Gregory and Korshunov, Pavel and Lavechin, Marvin and Fustes, Diego and Titeux, Hadrien and Bouaziz, Wassim and Gill, Marie-Philippe},
- booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
- pages={7124--7128},
- year={2020},
- organization={IEEE}
-}
-```
+```
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
index 139ee56..2747e2d 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,10 +1,8 @@
-numpy
-pandas
-torch >=1.9
-torchaudio >=0.10,<1.0
-tqdm
-more-itertools
-transformers>=4.19.0
-ffmpeg-python==0.2.0
+torch==1.11.0
+torchaudio==0.11.0
pyannote.audio
-openai-whisper==20230314
+faster-whisper
+transformers
+ffmpeg-python==0.2.0
+pandas
+setuptools==65.6.3
\ No newline at end of file
diff --git a/setup.py b/setup.py
index d6472e1..2060d42 100644
--- a/setup.py
+++ b/setup.py
@@ -6,7 +6,7 @@ from setuptools import setup, find_packages
setup(
name="whisperx",
py_modules=["whisperx"],
- version="2.0",
+ version="3.0.0",
description="Time-Accurate Automatic Speech Recognition using Whisper.",
readme="README.md",
python_requires=">=3.8",
diff --git a/whisperx/__init__.py b/whisperx/__init__.py
index 985ed32..d0294b9 100644
--- a/whisperx/__init__.py
+++ b/whisperx/__init__.py
@@ -1,3 +1,3 @@
-from .transcribe import transcribe, transcribe_with_vad
+from .transcribe import load_model
from .alignment import load_align_model, align
-from .vad import load_vad_model
\ No newline at end of file
+from .audio import load_audio
\ No newline at end of file
diff --git a/whisperx/alignment.py b/whisperx/alignment.py
index c15310b..09f044f 100644
--- a/whisperx/alignment.py
+++ b/whisperx/alignment.py
@@ -2,16 +2,17 @@
Forced Alignment with Whisper
C. Max Bain
"""
+from dataclasses import dataclass
+from typing import Iterator, Union
+
import numpy as np
import pandas as pd
-from typing import List, Union, Iterator, TYPE_CHECKING
-from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
-import torchaudio
import torch
-from dataclasses import dataclass
-from whisper.audio import SAMPLE_RATE, load_audio
-from .utils import interpolate_nans
+import torchaudio
+from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
+from .audio import SAMPLE_RATE, load_audio
+from .utils import interpolate_nans
LANGUAGES_WITHOUT_SPACES = ["ja", "zh"]
@@ -391,34 +392,42 @@ def align(
if 'level_1' in cseg: del cseg['level_1']
if 'level_0' in cseg: del cseg['level_0']
cseg.reset_index(inplace=True)
- aligned_segments.append(
- {
- "start": srow["start"],
- "end": srow["end"],
- "text": text,
- "word-segments": wseg,
- "char-segments": cseg
- }
- )
def get_raw_text(word_row):
return seg["seg-text"][word_row.name][int(word_row["segment-text-start"]):int(word_row["segment-text-end"])+1]
+ word_list = []
wdx = 0
curr_text = get_raw_text(wseg.iloc[wdx])
+ if not curr_text.startswith(" "):
+ curr_text = " " + curr_text
+
if len(wseg) > 1:
for _, wrow in wseg.iloc[1:].iterrows():
if wrow['start'] != wseg.iloc[wdx]['start']:
+ word_start = wseg.iloc[wdx]['start']
+ word_end = wseg.iloc[wdx]['end']
+
aligned_segments_word.append(
{
"text": curr_text.strip(),
- "start": wseg.iloc[wdx]["start"],
- "end": wseg.iloc[wdx]["end"],
+ "start": word_start,
+ "end": word_end
}
)
- curr_text = ""
- curr_text += " " + get_raw_text(wrow)
+
+ word_list.append(
+ {
+ "word": curr_text.rstrip(),
+ "start": word_start,
+ "end": word_end,
+ }
+ )
+
+ curr_text = " "
+ curr_text += get_raw_text(wrow) + " "
wdx += 1
+
aligned_segments_word.append(
{
"text": curr_text.strip(),
@@ -427,6 +436,25 @@ def align(
}
)
+ word_list.append(
+ {
+ "word": curr_text.rstrip(),
+ "start": word_start,
+ "end": word_end,
+ }
+ )
+
+ aligned_segments.append(
+ {
+ "start": srow["start"],
+ "end": srow["end"],
+ "text": text,
+ "words": word_list,
+ # "word-segments": wseg,
+ # "char-segments": cseg
+ }
+ )
+
return {"segments": aligned_segments, "word_segments": aligned_segments_word}
diff --git a/whisperx/asr.py b/whisperx/asr.py
index e78d77c..d9cbff0 100644
--- a/whisperx/asr.py
+++ b/whisperx/asr.py
@@ -1,433 +1,406 @@
+import os
import warnings
-from typing import TYPE_CHECKING, Optional, Tuple, Union
+from typing import List, Union
+
+import ctranslate2
+import faster_whisper
import numpy as np
import torch
-import tqdm
-import ffmpeg
-from whisper.audio import (
- FRAMES_PER_SECOND,
- HOP_LENGTH,
- N_FRAMES,
- N_SAMPLES,
- SAMPLE_RATE,
- CHUNK_LENGTH,
- log_mel_spectrogram,
- pad_or_trim,
- load_audio
-)
-from whisper.decoding import DecodingOptions, DecodingResult
-from whisper.timing import add_word_timestamps
-from whisper.tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
-from whisper.utils import (
- exact_div,
- format_timestamp,
- make_safe,
-)
+from transformers import Pipeline
+from transformers.pipelines.pt_utils import PipelineIterator
-if TYPE_CHECKING:
- from whisper.model import Whisper
+from .audio import N_SAMPLES, SAMPLE_RATE, load_audio, log_mel_spectrogram
+from .vad import load_vad_model, merge_chunks
-from .vad import merge_chunks
-def transcribe(
- model: "Whisper",
- audio: Union[str, np.ndarray, torch.Tensor] = None,
- mel: np.ndarray = None,
- verbose: Optional[bool] = None,
- temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
- compression_ratio_threshold: Optional[float] = 2.4,
- logprob_threshold: Optional[float] = -1.0,
- no_speech_threshold: Optional[float] = 0.6,
- condition_on_previous_text: bool = True,
- initial_prompt: Optional[str] = None,
- word_timestamps: bool = False,
- prepend_punctuations: str = "\"'“¿([{-",
- append_punctuations: str = "\"'.。,,!!??::”)]}、",
- **decode_options,
-):
- """
- Transcribe an audio file using Whisper.
- We redefine the Whisper transcribe function to allow mel input (for sequential slicing of audio)
+def load_model(whisper_arch, device, compute_type="float16", asr_options=None, language=None,
+ vad_options=None, model=None):
+ '''Load a Whisper model for inference.
+ Args:
+ whisper_arch: str - The name of the Whisper model to load.
+ device: str - The device to load the model on.
+ compute_type: str - The compute type to use for the model.
+ options: dict - A dictionary of options to use for the model.
+ language: str - The language of the model. (use English for now)
+ Returns:
+ A Whisper pipeline.
+ '''
- Parameters
- ----------
- model: Whisper
- The Whisper model instance
+ if whisper_arch.endswith(".en"):
+ language = "en"
- audio: Union[str, np.ndarray, torch.Tensor]
- The path to the audio file to open, or the audio waveform
-
- mel: np.ndarray
- Mel spectrogram of audio segment.
-
- verbose: bool
- Whether to display the text being decoded to the console. If True, displays all the details,
- If False, displays minimal details. If None, does not display anything
-
- temperature: Union[float, Tuple[float, ...]]
- Temperature for sampling. It can be a tuple of temperatures, which will be successively used
- upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
-
- compression_ratio_threshold: float
- If the gzip compression ratio is above this value, treat as failed
-
- logprob_threshold: float
- If the average log probability over sampled tokens is below this value, treat as failed
-
- no_speech_threshold: float
- If the no_speech probability is higher than this value AND the average log probability
- over sampled tokens is below `logprob_threshold`, consider the segment as silent
-
- condition_on_previous_text: bool
- if True, the previous output of the model is provided as a prompt for the next window;
- disabling may make the text inconsistent across windows, but the model becomes less prone to
- getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
-
- word_timestamps: bool
- Extract word-level timestamps using the cross-attention pattern and dynamic time warping,
- and include the timestamps for each word in each segment.
-
- prepend_punctuations: str
- If word_timestamps is True, merge these punctuation symbols with the next word
-
- append_punctuations: str
- If word_timestamps is True, merge these punctuation symbols with the previous word
-
- initial_prompt: Optional[str]
- Optional text to provide as a prompt for the first window. This can be used to provide, or
- "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
- to make it more likely to predict those word correctly.
-
- decode_options: dict
- Keyword arguments to construct `DecodingOptions` instances
-
- Returns
- -------
- A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
- the spoken language ("language"), which is detected when `decode_options["language"]` is None.
- """
- dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
- if model.device == torch.device("cpu"):
- if torch.cuda.is_available():
- warnings.warn("Performing inference on CPU when CUDA is available")
- if dtype == torch.float16:
- warnings.warn("FP16 is not supported on CPU; using FP32 instead")
- dtype = torch.float32
-
- if dtype == torch.float32:
- decode_options["fp16"] = False
-
- # Pad 30-seconds of silence to the input audio, for slicing
- if mel is None:
- if audio is None:
- raise ValueError("Transcribe needs either audio or mel as input, currently both are none.")
- mel = log_mel_spectrogram(audio, padding=N_SAMPLES)
- content_frames = mel.shape[-1] - N_FRAMES
-
- if decode_options.get("language", None) is None:
- if not model.is_multilingual:
- decode_options["language"] = "en"
- else:
- if verbose:
- print(
- "Detecting language using up to the first 30 seconds. Use `--language` to specify the language"
- )
- mel_segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
- _, probs = model.detect_language(mel_segment)
- decode_options["language"] = max(probs, key=probs.get)
- if verbose is not None:
- print(
- f"Detected language: {LANGUAGES[decode_options['language']].title()}"
- )
-
- language: str = decode_options["language"]
- task: str = decode_options.get("task", "transcribe")
- tokenizer = get_tokenizer(model.is_multilingual, language=language, task=task)
-
- if word_timestamps and task == "translate":
- warnings.warn("Word-level timestamps on translations may not be reliable.")
-
- def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:
- temperatures = (
- [temperature] if isinstance(temperature, (int, float)) else temperature
- )
- decode_result = None
-
- for t in temperatures:
- kwargs = {**decode_options}
- if t > 0:
- # disable beam_size and patience when t > 0
- kwargs.pop("beam_size", None)
- kwargs.pop("patience", None)
- else:
- # disable best_of when t == 0
- kwargs.pop("best_of", None)
-
- options = DecodingOptions(**kwargs, temperature=t)
- decode_result = model.decode(segment, options)
-
- needs_fallback = False
- if (
- compression_ratio_threshold is not None
- and decode_result.compression_ratio > compression_ratio_threshold
- ):
- needs_fallback = True # too repetitive
- if (
- logprob_threshold is not None
- and decode_result.avg_logprob < logprob_threshold
- ):
- needs_fallback = True # average log probability is too low
-
- if not needs_fallback:
- break
-
- return decode_result
-
- seek = 0
- input_stride = exact_div(
- N_FRAMES, model.dims.n_audio_ctx
- ) # mel frames per output token: 2
- time_precision = (
- input_stride * HOP_LENGTH / SAMPLE_RATE
- ) # time per output token: 0.02 (seconds)
- all_tokens = []
- all_segments = []
- prompt_reset_since = 0
-
- if initial_prompt is not None:
- initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
- all_tokens.extend(initial_prompt_tokens)
+ model = WhisperModel(whisper_arch, device=device, compute_type=compute_type)
+ if language is not None:
+ tokenizer = faster_whisper.tokenizer.Tokenizer(model.hf_tokenizer, model.model.is_multilingual, task="transcribe", language=language)
else:
- initial_prompt_tokens = []
+ print("No language specified, language will be first be detected for each audio file (increases inference time).")
+ tokenizer = None
- def new_segment(
- *, start: float, end: float, tokens: torch.Tensor, result: DecodingResult
+ default_asr_options = {
+ "beam_size": 5,
+ "best_of": 5,
+ "patience": 1,
+ "length_penalty": 1,
+ "temperatures": [0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
+ "compression_ratio_threshold": 2.4,
+ "log_prob_threshold": -1.0,
+ "no_speech_threshold": 0.6,
+ "condition_on_previous_text": False,
+ "initial_prompt": None,
+ "prefix": None,
+ "suppress_blank": True,
+ "suppress_tokens": [-1],
+ "without_timestamps": True,
+ "max_initial_timestamp": 0.0,
+ "word_timestamps": False,
+ "prepend_punctuations": "\"'“¿([{-",
+ "append_punctuations": "\"'.。,,!!??::”)]}、"
+ }
+
+ if asr_options is not None:
+ default_asr_options.update(asr_options)
+ default_asr_options = faster_whisper.transcribe.TranscriptionOptions(**default_asr_options)
+
+ default_vad_options = {
+ "vad_onset": 0.500,
+ "vad_offset": 0.363
+ }
+
+ if vad_options is not None:
+ default_vad_options.update(vad_options)
+
+ vad_model = load_vad_model(torch.device(device), use_auth_token=None, **default_vad_options)
+
+ return FasterWhisperPipeline(model, vad_model, default_asr_options, tokenizer)
+
+
+
+class WhisperModel(faster_whisper.WhisperModel):
+ '''
+ FasterWhisperModel provides batched inference for faster-whisper.
+ Currently only works in non-timestamp mode.
+ '''
+
+ def generate_segment_batched(self, features: np.ndarray, tokenizer: faster_whisper.tokenizer.Tokenizer, options: faster_whisper.transcribe.TranscriptionOptions, encoder_output = None):
+ batch_size = features.shape[0]
+ all_tokens = []
+ prompt_reset_since = 0
+ if options.initial_prompt is not None:
+ initial_prompt = " " + options.initial_prompt.strip()
+ initial_prompt_tokens = tokenizer.encode(initial_prompt)
+ all_tokens.extend(initial_prompt_tokens)
+ previous_tokens = all_tokens[prompt_reset_since:]
+ prompt = self.get_prompt(
+ tokenizer,
+ previous_tokens,
+ without_timestamps=options.without_timestamps,
+ prefix=options.prefix,
+ )
+
+ encoder_output = self.encode(features)
+
+ max_initial_timestamp_index = int(
+ round(options.max_initial_timestamp / self.time_precision)
+ )
+
+ result = self.model.generate(
+ encoder_output,
+ [prompt] * batch_size,
+ # length_penalty=options.length_penalty,
+ # max_length=self.max_length,
+ # return_scores=True,
+ # return_no_speech_prob=True,
+ # suppress_blank=options.suppress_blank,
+ # suppress_tokens=options.suppress_tokens,
+ # max_initial_timestamp_index=max_initial_timestamp_index,
+ )
+
+ tokens_batch = [x.sequences_ids[0] for x in result]
+
+ def decode_batch(tokens: List[List[int]]) -> str:
+ res = []
+ for tk in tokens:
+ res.append([token for token in tk if token < tokenizer.eot])
+ # text_tokens = [token for token in tokens if token < self.eot]
+ return tokenizer.tokenizer.decode_batch(res)
+
+ text = decode_batch(tokens_batch)
+
+ return text
+
+ def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
+ # When the model is running on multiple GPUs, the encoder output should be moved
+ # to the CPU since we don't know which GPU will handle the next job.
+ to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
+ # unsqueeze if batch size = 1
+ if len(features.shape) == 2:
+ features = np.expand_dims(features, 0)
+ features = faster_whisper.transcribe.get_ctranslate2_storage(features)
+
+ return self.model.encode(features, to_cpu=to_cpu)
+
+class FasterWhisperPipeline(Pipeline):
+ def __init__(
+ self,
+ model,
+ vad,
+ options,
+ tokenizer=None,
+ device: Union[int, str, "torch.device"] = -1,
+ framework = "pt",
+ **kwargs
):
- tokens = tokens.tolist()
- text_tokens = [token for token in tokens if token < tokenizer.eot]
- return {
- "seek": seek,
- "start": start,
- "end": end,
- "text": tokenizer.decode(text_tokens),
- "tokens": tokens,
- "temperature": result.temperature,
- "avg_logprob": result.avg_logprob,
- "compression_ratio": result.compression_ratio,
- "no_speech_prob": result.no_speech_prob,
- }
-
-
- # show the progress bar when verbose is False (if True, transcribed text will be printed)
- with tqdm.tqdm(
- total=content_frames, unit="frames", disable=verbose is not False
- ) as pbar:
- while seek < content_frames:
- time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
- mel_segment = mel[:, seek : seek + N_FRAMES]
- segment_size = min(N_FRAMES, content_frames - seek)
- segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
- mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)
-
- decode_options["prompt"] = all_tokens[prompt_reset_since:]
- result: DecodingResult = decode_with_fallback(mel_segment)
- tokens = torch.tensor(result.tokens)
- if no_speech_threshold is not None:
- # no voice activity check
- should_skip = result.no_speech_prob > no_speech_threshold
- if (
- logprob_threshold is not None
- and result.avg_logprob > logprob_threshold
- ):
- # don't skip if the logprob is high enough, despite the no_speech_prob
- should_skip = False
-
- if should_skip:
- seek += segment_size # fast-forward to the next segment boundary
- continue
-
- previous_seek = seek
- current_segments = []
-
- timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
- single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
-
- consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
- consecutive.add_(1)
- if len(consecutive) > 0:
- # if the output contains two consecutive timestamp tokens
- slices = consecutive.tolist()
- if single_timestamp_ending:
- slices.append(len(tokens))
-
- last_slice = 0
- for current_slice in slices:
- sliced_tokens = tokens[last_slice:current_slice]
- start_timestamp_pos = (
- sliced_tokens[0].item() - tokenizer.timestamp_begin
- )
- end_timestamp_pos = (
- sliced_tokens[-1].item() - tokenizer.timestamp_begin
- )
-
- # clamp end-time to at least be 1 frame after start-time
- end_timestamp_pos = max(end_timestamp_pos, start_timestamp_pos + time_precision)
-
- current_segments.append(
- new_segment(
- start=time_offset + start_timestamp_pos * time_precision,
- end=time_offset + end_timestamp_pos * time_precision,
- tokens=sliced_tokens,
- result=result,
- )
- )
- last_slice = current_slice
-
- if single_timestamp_ending:
- # single timestamp at the end means no speech after the last timestamp.
- seek += segment_size
- else:
- # otherwise, ignore the unfinished segment and seek to the last timestamp
- last_timestamp_pos = (
- tokens[last_slice - 1].item() - tokenizer.timestamp_begin
- )
- seek += last_timestamp_pos * input_stride
+ self.model = model
+ self.tokenizer = tokenizer
+ self.options = options
+ self._batch_size = kwargs.pop("batch_size", None)
+ self._num_workers = 1
+ self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs)
+ self.call_count = 0
+ self.framework = framework
+ if self.framework == "pt":
+ if isinstance(device, torch.device):
+ self.device = device
+ elif isinstance(device, str):
+ self.device = torch.device(device)
+ elif device < 0:
+ self.device = torch.device("cpu")
else:
- duration = segment_duration
- timestamps = tokens[timestamp_tokens.nonzero().flatten()]
- if (
- len(timestamps) > 0
- and timestamps[-1].item() != tokenizer.timestamp_begin
- ):
- # no consecutive timestamps but it has a timestamp; use the last one.
- last_timestamp_pos = (
- timestamps[-1].item() - tokenizer.timestamp_begin
- )
- duration = last_timestamp_pos * time_precision
+ self.device = torch.device(f"cuda:{device}")
+ else:
+ self.device = device
+
+ super(Pipeline, self).__init__()
+ self.vad_model = vad
- current_segments.append(
- new_segment(
- start=time_offset,
- end=time_offset + duration,
- tokens=tokens,
- result=result,
- )
- )
- seek += segment_size
+ def _sanitize_parameters(self, **kwargs):
+ preprocess_kwargs = {}
+ if "tokenizer" in kwargs:
+ preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
+ return preprocess_kwargs, {}, {}
- if not condition_on_previous_text or result.temperature > 0.5:
- # do not feed the prompt tokens if a high temperature was used
- prompt_reset_since = len(all_tokens)
+ def preprocess(self, audio):
+ audio = audio['inputs']
+ features = log_mel_spectrogram(audio, padding=N_SAMPLES - audio.shape[0])
+ return {'inputs': features}
- if word_timestamps:
- add_word_timestamps(
- segments=current_segments,
- model=model,
- tokenizer=tokenizer,
- mel=mel_segment,
- num_frames=segment_size,
- prepend_punctuations=prepend_punctuations,
- append_punctuations=append_punctuations,
- )
- word_end_timestamps = [
- w["end"] for s in current_segments for w in s["words"]
- ]
- if not single_timestamp_ending and len(word_end_timestamps) > 0:
- seek_shift = round(
- (word_end_timestamps[-1] - time_offset) * FRAMES_PER_SECOND
- )
- if seek_shift > 0:
- seek = previous_seek + seek_shift
+ def _forward(self, model_inputs):
+ outputs = self.model.generate_segment_batched(model_inputs['inputs'], self.tokenizer, self.options)
+ return {'text': outputs}
+
+ def postprocess(self, model_outputs):
+ return model_outputs
- if verbose:
- for segment in current_segments:
- start, end, text = segment["start"], segment["end"], segment["text"]
- line = f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}"
- print(make_safe(line))
+ def get_iterator(
+ self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
+ ):
+ dataset = PipelineIterator(inputs, self.preprocess, preprocess_params)
+ if "TOKENIZERS_PARALLELISM" not in os.environ:
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
+ # TODO hack by collating feature_extractor and image_processor
- # if a segment is instantaneous or does not contain text, clear it
- for i, segment in enumerate(current_segments):
- if segment["start"] == segment["end"] or segment["text"].strip() == "":
- segment["text"] = ""
- segment["tokens"] = []
- segment["words"] = []
+ def stack(items):
+ return {'inputs': torch.stack([x['inputs'] for x in items])}
+ dataloader = torch.utils.data.DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=stack)
+ model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size)
+ final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params)
+ return final_iterator
- all_segments.extend(
- [
- {"id": i, **segment}
- for i, segment in enumerate(
- current_segments, start=len(all_segments)
- )
- ]
- )
- all_tokens.extend(
- [token for segment in current_segments for token in segment["tokens"]]
- )
+ def transcribe(
+ self, audio: Union[str, np.ndarray], batch_size=None
+ ):
+ if isinstance(audio, str):
+ audio = load_audio(audio)
+
+ def data(audio, segments):
+ for seg in segments:
+ f1 = int(seg['start'] * SAMPLE_RATE)
+ f2 = int(seg['end'] * SAMPLE_RATE)
+ # print(f2-f1)
+ yield {'inputs': audio[f1:f2]}
- # update progress bar
- pbar.update(min(content_frames, seek) - previous_seek)
+ vad_segments = self.vad_model({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": SAMPLE_RATE})
+ vad_segments = merge_chunks(vad_segments, 30)
+ del_tokenizer = False
+ if self.tokenizer is None:
+ language = self.detect_language(audio)
+ self.tokenizer = faster_whisper.tokenizer.Tokenizer(self.model.hf_tokenizer, self.model.model.is_multilingual, task="transcribe", language=language)
+ del_tokenizer = True
+ else:
+ language = self.tokenizer.language_code
- return dict(
- text=tokenizer.decode(all_tokens[len(initial_prompt_tokens) :]),
- segments=all_segments,
- language=language,
- )
-
-
-def transcribe_with_vad(
- model: "Whisper",
- audio: str,
- vad_pipeline,
- mel = None,
- verbose: Optional[bool] = None,
- **kwargs
-):
- """
- Transcribe per VAD segment
- """
-
- vad_segments = vad_pipeline(audio)
-
- # if not torch.is_tensor(audio):
- # if isinstance(audio, str):
- audio = load_audio(audio)
- audio = torch.from_numpy(audio)
-
- prev = 0
- output = {"segments": []}
-
- # merge segments to approx 30s inputs to make whisper most appropraite
- vad_segments = merge_chunks(vad_segments, chunk_size=CHUNK_LENGTH)
- if len(vad_segments) == 0:
- return output
-
- print(">>Performing transcription...")
- for sdx, seg_t in enumerate(vad_segments):
- if verbose:
- print(f"~~ Transcribing VAD chunk: ({format_timestamp(seg_t['start'])} --> {format_timestamp(seg_t['end'])}) ~~")
- seg_f_start, seg_f_end = int(seg_t["start"] * SAMPLE_RATE), int(seg_t["end"] * SAMPLE_RATE)
- local_f_start, local_f_end = seg_f_start - prev, seg_f_end - prev
- audio = audio[local_f_start:] # seek forward
- seg_audio = audio[:local_f_end-local_f_start] # seek forward
- prev = seg_f_start
- local_mel = log_mel_spectrogram(seg_audio, padding=N_SAMPLES)
- # need to pad
-
- result = transcribe(model, audio, mel=local_mel, verbose=verbose, **kwargs)
- seg_t["text"] = result["text"]
- output["segments"].append(
- {
- "start": seg_t["start"],
- "end": seg_t["end"],
- "language": result["language"],
- "text": result["text"],
- "seg-text": [x["text"] for x in result["segments"]],
- "seg-start": [x["start"] for x in result["segments"]],
- "seg-end": [x["end"] for x in result["segments"]],
+ segments = []
+ batch_size = batch_size or self._batch_size
+ for idx, out in enumerate(self.__call__(data(audio, vad_segments), batch_size=batch_size)):
+ text = out['text']
+ if batch_size in [0, 1, None]:
+ text = text[0]
+ segments.append(
+ {
+ "text": out['text'],
+ "start": round(vad_segments[idx]['start'], 3),
+ "end": round(vad_segments[idx]['end'], 3)
}
)
+
+ if del_tokenizer:
+ self.tokenizer = None
- output["language"] = output["segments"][0]["language"]
+ return {"segments": segments, "language": language}
- return output
+
+ def detect_language(self, audio: np.ndarray):
+ segment = log_mel_spectrogram(audio[: N_SAMPLES], padding=0)
+ encoder_output = self.model.encode(segment)
+ results = self.model.model.detect_language(encoder_output)
+ language_token, language_probability = results[0][0]
+ language = language_token[2:-2]
+ print(f"Detected language: {language} ({language_probability:.2f}) in first 30s of audio...")
+ return language
+
+if __name__ == "__main__":
+ main_type = "simple"
+ import time
+
+ import jiwer
+ from tqdm import tqdm
+ from whisper.normalizers import EnglishTextNormalizer
+
+ from benchmark.tedlium import parse_tedlium_annos
+
+ if main_type == "complex":
+ from faster_whisper.tokenizer import Tokenizer
+ from faster_whisper.transcribe import TranscriptionOptions
+ from faster_whisper.vad import (SpeechTimestampsMap,
+ get_speech_timestamps)
+
+ from whisperx.vad import load_vad_model, merge_chunks
+
+ from .audio import SAMPLE_RATE, load_audio, log_mel_spectrogram
+ faster_t_options = TranscriptionOptions(
+ beam_size=5,
+ best_of=5,
+ patience=1,
+ length_penalty=1,
+ temperatures=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
+ compression_ratio_threshold=2.4,
+ log_prob_threshold=-1.0,
+ no_speech_threshold=0.6,
+ condition_on_previous_text=False,
+ initial_prompt=None,
+ prefix=None,
+ suppress_blank=True,
+ suppress_tokens=[-1],
+ without_timestamps=True,
+ max_initial_timestamp=0.0,
+ word_timestamps=False,
+ prepend_punctuations="\"'“¿([{-",
+ append_punctuations="\"'.。,,!!??::”)]}、"
+ )
+ whisper_arch = "large-v2"
+ device = "cuda"
+ batch_size = 16
+ model = WhisperModel(whisper_arch, device="cuda", compute_type="float16",)
+ tokenizer = Tokenizer(model.hf_tokenizer, model.model.is_multilingual, task="transcribe", language="en")
+ model = FasterWhisperPipeline(model, tokenizer, faster_t_options, device=-1)
+ fn = "DanielKahneman_2010.wav"
+ wav_dir = f"/tmp/test/wav/"
+ vad_model = load_vad_model("cuda", 0.6, 0.3)
+ audio = load_audio(os.path.join(wav_dir, fn))
+ vad_segments = vad_model({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": SAMPLE_RATE})
+ vad_segments = merge_chunks(vad_segments, 30)
+
+ def data(audio, segments):
+ for seg in segments:
+ f1 = int(seg['start'] * SAMPLE_RATE)
+ f2 = int(seg['end'] * SAMPLE_RATE)
+ # print(f2-f1)
+ yield {'inputs': audio[f1:f2]}
+ vad_method="pyannote"
+
+ wav_dir = f"/tmp/test/wav/"
+ wer_li = []
+ time_li = []
+ for fn in os.listdir(wav_dir):
+ if fn == "RobertGupta_2010U.wav":
+ continue
+ base_fn = fn.split('.')[0]
+ audio_fp = os.path.join(wav_dir, fn)
+
+ audio = load_audio(audio_fp)
+ t1 = time.time()
+ if vad_method == "pyannote":
+ vad_segments = vad_model({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": SAMPLE_RATE})
+ vad_segments = merge_chunks(vad_segments, 30)
+ elif vad_method == "silero":
+ vad_segments = get_speech_timestamps(audio, threshold=0.5, max_speech_duration_s=30)
+ vad_segments = [{"start": x["start"] / SAMPLE_RATE, "end": x["end"] / SAMPLE_RATE} for x in vad_segments]
+ new_segs = []
+ curr_start = vad_segments[0]['start']
+ curr_end = vad_segments[0]['end']
+ for seg in vad_segments[1:]:
+ if seg['end'] - curr_start > 30:
+ new_segs.append({"start": curr_start, "end": curr_end})
+ curr_start = seg['start']
+ curr_end = seg['end']
+ else:
+ curr_end = seg['end']
+ new_segs.append({"start": curr_start, "end": curr_end})
+ vad_segments = new_segs
+ text = []
+ # for idx, out in tqdm(enumerate(model(data(audio_fp, vad_segments), batch_size=batch_size)), total=len(vad_segments)):
+ for idx, out in enumerate(model(data(audio, vad_segments), batch_size=batch_size)):
+ text.append(out['text'])
+ t2 = time.time()
+ if batch_size == 1:
+ text = [x[0] for x in text]
+ text = " ".join(text)
+
+ normalizer = EnglishTextNormalizer()
+ text = normalizer(text)
+ gt_corpus = normalizer(parse_tedlium_annos(base_fn, "/tmp/test/"))
+
+ wer_result = jiwer.wer(gt_corpus, text)
+ print("WER: %.2f \t time: %.2f \t [%s]" % (wer_result * 100, t2-t1, fn))
+
+ wer_li.append(wer_result)
+ time_li.append(t2-t1)
+ print("# Avg Mean...")
+ print("WER: %.2f" % (sum(wer_li) * 100/len(wer_li)))
+ print("Time: %.2f" % (sum(time_li)/len(time_li)))
+ elif main_type == "simple":
+ model = load_model(
+ "large-v2",
+ device="cuda",
+ language="en",
+ )
+
+ wav_dir = f"/tmp/test/wav/"
+ wer_li = []
+ time_li = []
+ for fn in os.listdir(wav_dir):
+ if fn == "RobertGupta_2010U.wav":
+ continue
+ # fn = "DanielKahneman_2010.wav"
+ base_fn = fn.split('.')[0]
+ audio_fp = os.path.join(wav_dir, fn)
+
+ audio = load_audio(audio_fp)
+ t1 = time.time()
+ out = model.transcribe(audio_fp, batch_size=8)["segments"]
+ t2 = time.time()
+
+ text = " ".join([x['text'] for x in out])
+ normalizer = EnglishTextNormalizer()
+ text = normalizer(text)
+ gt_corpus = normalizer(parse_tedlium_annos(base_fn, "/tmp/test/"))
+
+ wer_result = jiwer.wer(gt_corpus, text)
+ print("WER: %.2f \t time: %.2f \t [%s]" % (wer_result * 100, t2-t1, fn))
+
+ wer_li.append(wer_result)
+ time_li.append(t2-t1)
+ print("# Avg Mean...")
+ print("WER: %.2f" % (sum(wer_li) * 100/len(wer_li)))
+ print("Time: %.2f" % (sum(time_li)/len(time_li)))
diff --git a/whisperx/assets/mel_filters.npz b/whisperx/assets/mel_filters.npz
new file mode 100644
index 0000000..1a78392
Binary files /dev/null and b/whisperx/assets/mel_filters.npz differ
diff --git a/whisperx/audio.py b/whisperx/audio.py
new file mode 100644
index 0000000..513ab7c
--- /dev/null
+++ b/whisperx/audio.py
@@ -0,0 +1,147 @@
+import os
+from functools import lru_cache
+from typing import Optional, Union
+
+import ffmpeg
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+from .utils import exact_div
+
+# hard-coded audio hyperparameters
+SAMPLE_RATE = 16000
+N_FFT = 400
+N_MELS = 80
+HOP_LENGTH = 160
+CHUNK_LENGTH = 30
+N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
+N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input
+
+N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
+FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
+TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
+
+
+def load_audio(file: str, sr: int = SAMPLE_RATE):
+ """
+ Open an audio file and read as mono waveform, resampling as necessary
+
+ Parameters
+ ----------
+ file: str
+ The audio file to open
+
+ sr: int
+ The sample rate to resample the audio if necessary
+
+ Returns
+ -------
+ A NumPy array containing the audio waveform, in float32 dtype.
+ """
+ try:
+ # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
+ # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
+ out, _ = (
+ ffmpeg.input(file, threads=0)
+ .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
+ .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
+ )
+ except ffmpeg.Error as e:
+ raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
+
+ return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
+
+
+def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
+ """
+ Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
+ """
+ if torch.is_tensor(array):
+ if array.shape[axis] > length:
+ array = array.index_select(
+ dim=axis, index=torch.arange(length, device=array.device)
+ )
+
+ if array.shape[axis] < length:
+ pad_widths = [(0, 0)] * array.ndim
+ pad_widths[axis] = (0, length - array.shape[axis])
+ array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
+ else:
+ if array.shape[axis] > length:
+ array = array.take(indices=range(length), axis=axis)
+
+ if array.shape[axis] < length:
+ pad_widths = [(0, 0)] * array.ndim
+ pad_widths[axis] = (0, length - array.shape[axis])
+ array = np.pad(array, pad_widths)
+
+ return array
+
+
+@lru_cache(maxsize=None)
+def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
+ """
+ load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
+ Allows decoupling librosa dependency; saved using:
+
+ np.savez_compressed(
+ "mel_filters.npz",
+ mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
+ )
+ """
+ assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
+ with np.load(
+ os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
+ ) as f:
+ return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
+
+
+def log_mel_spectrogram(
+ audio: Union[str, np.ndarray, torch.Tensor],
+ n_mels: int = N_MELS,
+ padding: int = 0,
+ device: Optional[Union[str, torch.device]] = None,
+):
+ """
+ Compute the log-Mel spectrogram of
+
+ Parameters
+ ----------
+ audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
+ The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
+
+ n_mels: int
+ The number of Mel-frequency filters, only 80 is supported
+
+ padding: int
+ Number of zero samples to pad to the right
+
+ device: Optional[Union[str, torch.device]]
+ If given, the audio tensor is moved to this device before STFT
+
+ Returns
+ -------
+ torch.Tensor, shape = (80, n_frames)
+ A Tensor that contains the Mel spectrogram
+ """
+ if not torch.is_tensor(audio):
+ if isinstance(audio, str):
+ audio = load_audio(audio)
+ audio = torch.from_numpy(audio)
+
+ if device is not None:
+ audio = audio.to(device)
+ if padding > 0:
+ audio = F.pad(audio, (0, padding))
+ window = torch.hann_window(N_FFT).to(audio.device)
+ stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
+ magnitudes = stft[..., :-1].abs() ** 2
+
+ filters = mel_filters(audio.device, n_mels)
+ mel_spec = filters @ magnitudes
+
+ log_spec = torch.clamp(mel_spec, min=1e-10).log10()
+ log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
+ log_spec = (log_spec + 4.0) / 4.0
+ return log_spec
diff --git a/whisperx/transcribe.py b/whisperx/transcribe.py
index ed918e0..c3719ba 100644
--- a/whisperx/transcribe.py
+++ b/whisperx/transcribe.py
@@ -1,37 +1,30 @@
import argparse
-import os
import gc
+import os
import warnings
-from typing import TYPE_CHECKING, Optional, Tuple, Union
+
import numpy as np
import torch
-import tempfile
-import ffmpeg
-from whisper.tokenizer import LANGUAGES, TO_LANGUAGE_CODE
-from whisper.audio import SAMPLE_RATE
-from whisper.utils import (
- optional_float,
- optional_int,
- str2bool,
-)
-from .alignment import load_align_model, align
-from .asr import transcribe, transcribe_with_vad
+from .alignment import align, load_align_model
+from .asr import load_model
+from .audio import load_audio
from .diarize import DiarizationPipeline, assign_word_speakers
-from .utils import get_writer
-from .vad import load_vad_model
+from .utils import (LANGUAGES, TO_LANGUAGE_CODE, get_writer, optional_float,
+ optional_int, str2bool)
+
def cli():
- from whisper import available_models
-
# fmt: off
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
- parser.add_argument("--model", default="small", choices=available_models(), help="name of the Whisper model to use")
+ parser.add_argument("--model", default="small", help="name of the Whisper model to use")
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
+ parser.add_argument("--batch_size", default=8, type=int, help="device to use for PyTorch inference")
+
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
- parser.add_argument("--output_format", "-f", type=str, default="all", choices=["all", "srt", "srt-word", "vtt", "txt", "tsv", "ass", "ass-char", "pickle", "vad"], help="format of the output file; if not specified, all available formats will be produced")
+ parser.add_argument("--output_format", "-f", type=str, default="all", choices=["all", "srt", "vtt", "txt", "tsv", "json"], help="format of the output file; if not specified, all available formats will be produced")
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
@@ -39,13 +32,10 @@ def cli():
# alignment params
parser.add_argument("--align_model", default=None, help="Name of phoneme-level ASR model to do alignment")
- parser.add_argument("--align_extend", default=2, type=float, help="Seconds before and after to extend the whisper segments for alignment (if not using VAD).")
- parser.add_argument("--align_from_prev", default=True, type=bool, help="Whether to clip the alignment start time of current segment to the end time of the last aligned word of the previous segment (if not using VAD)")
parser.add_argument("--interpolate_method", default="nearest", choices=["nearest", "linear", "ignore"], help="For word .srt, method to assign timestamps to non-aligned words, or merge them into neighbouring.")
parser.add_argument("--no_align", action='store_true', help="Do not perform phoneme alignment")
# vad params
- parser.add_argument("--vad_filter", type=str2bool, default=True, help="Whether to pre-segment audio with VAD, highly recommended! Produces more accurate alignment + timestamp see WhisperX paper https://arxiv.org/abs/2303.00747")
parser.add_argument("--vad_onset", type=float, default=0.500, help="Onset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected")
parser.add_argument("--vad_offset", type=float, default=0.363, help="Offset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected.")
@@ -69,9 +59,14 @@ def cli():
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
- parser.add_argument("--word_timestamps", type=str2bool, default=False, help="(experimental) extract word-level timestamps and refine the results based on them")
- parser.add_argument("--prepend_punctuations", type=str, default="\"\'“¿([{-", help="if word_timestamps is True, merge these punctuation symbols with the next word")
- parser.add_argument("--append_punctuations", type=str, default="\"\'.。,,!!??::”)]}、", help="if word_timestamps is True, merge these punctuation symbols with the previous word")
+
+ parser.add_argument("--max_line_width", type=optional_int, default=None, help="(not possible with --no_align) the maximum number of characters in a line before breaking the line")
+ parser.add_argument("--max_line_count", type=optional_int, default=None, help="(requires --no_align) the maximum number of lines in a segment")
+ parser.add_argument("--highlight_words", type=str2bool, default=False, help="(requires --word_timestamps True) underline each word as it is spoken in srt and vtt")
+
+ # parser.add_argument("--word_timestamps", type=str2bool, default=False, help="(experimental) extract word-level timestamps and refine the results based on them")
+ # parser.add_argument("--prepend_punctuations", type=str, default="\"\'“¿([{-", help="if word_timestamps is True, merge these punctuation symbols with the next word")
+ # parser.add_argument("--append_punctuations", type=str, default="\"\'.。,,!!??::”)]}、", help="if word_timestamps is True, merge these punctuation symbols with the previous word")
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face Access Token to access PyAnnote gated models")
@@ -81,7 +76,7 @@ def cli():
args = parser.parse_args().__dict__
model_name: str = args.pop("model")
- model_dir: str = args.pop("model_dir")
+ batch_size: int = args.pop("batch_size")
output_dir: str = args.pop("output_dir")
output_format: str = args.pop("output_format")
device: str = args.pop("device")
@@ -93,13 +88,10 @@ def cli():
os.makedirs(tmp_dir, exist_ok=True)
align_model: str = args.pop("align_model")
- align_extend: float = args.pop("align_extend")
- align_from_prev: bool = args.pop("align_from_prev")
interpolate_method: str = args.pop("interpolate_method")
no_align: bool = args.pop("no_align")
hf_token: str = args.pop("hf_token")
- vad_filter: bool = args.pop("vad_filter")
vad_onset: float = args.pop("vad_onset")
vad_offset: float = args.pop("vad_offset")
@@ -107,18 +99,7 @@ def cli():
min_speakers: int = args.pop("min_speakers")
max_speakers: int = args.pop("max_speakers")
- if vad_filter:
- from pyannote.audio import Pipeline
- from pyannote.audio import Model, Pipeline
- vad_model = load_vad_model(torch.device(device), vad_onset, vad_offset, use_auth_token=hf_token)
- else:
- vad_model = None
-
- # if model_flush:
- # print(">>Model flushing activated... Only loading model after ASR stage")
- # del align_model
- # align_model = ""
-
+ # TODO: check model loading works.
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
if args["language"] is not None:
@@ -136,39 +117,43 @@ def cli():
if (threads := args.pop("threads")) > 0:
torch.set_num_threads(threads)
- from whisper import load_model
+ asr_options = {
+ "beam_size": args.pop("beam_size"),
+ "patience": args.pop("patience"),
+ "length_penalty": args.pop("length_penalty"),
+ "temperatures": temperature,
+ "compression_ratio_threshold": args.pop("compression_ratio_threshold"),
+ "log_prob_threshold": args.pop("logprob_threshold"),
+ "no_speech_threshold": args.pop("no_speech_threshold"),
+ "condition_on_previous_text": False,
+ "initial_prompt": args.pop("initial_prompt"),
+ }
writer = get_writer(output_format, output_dir)
-
+ word_options = ["highlight_words", "max_line_count", "max_line_width"]
+ if no_align:
+ for option in word_options:
+ if args[option]:
+ parser.error(f"--{option} requires --word_timestamps True")
+ if args["max_line_count"] and not args["max_line_width"]:
+ warnings.warn("--max_line_count has no effect without --max_line_width")
+ writer_args = {arg: args.pop(arg) for arg in word_options}
+
# Part 1: VAD & ASR Loop
results = []
tmp_results = []
- model = load_model(model_name, device=device, download_root=model_dir)
- for audio_path in args.pop("audio"):
- input_audio_path = audio_path
- tfile = None
+ # model = load_model(model_name, device=device, download_root=model_dir)
+ model = load_model(model_name, device=device, language=args['language'], asr_options=asr_options, vad_options={"vad_onset": vad_onset, "vad_offset": vad_offset},)
+ for audio_path in args.pop("audio"):
+ audio = load_audio(audio_path)
# >> VAD & ASR
- if vad_model is not None:
- if not audio_path.endswith(".wav"):
- print(">>VAD requires .wav format, converting to wav as a tempfile...")
- audio_basename = os.path.splitext(os.path.basename(audio_path))[0]
- if tmp_dir is not None:
- input_audio_path = os.path.join(tmp_dir, audio_basename + ".wav")
- else:
- input_audio_path = os.path.join(os.path.dirname(audio_path), audio_basename + ".wav")
- ffmpeg.input(audio_path, threads=0).output(input_audio_path, ac=1, ar=SAMPLE_RATE).run(cmd=["ffmpeg"])
- print(">>Performing VAD...")
- result = transcribe_with_vad(model, input_audio_path, vad_model, temperature=temperature, **args)
- else:
- print(">>Performing transcription...")
- result = transcribe(model, input_audio_path, temperature=temperature, **args)
-
- results.append((result, input_audio_path))
+ print(">>Performing transcription...")
+ result = model.transcribe(audio, batch_size=batch_size)
+ results.append((result, audio_path))
# Unload Whisper and VAD
del model
- del vad_model
gc.collect()
torch.cuda.empty_cache()
@@ -178,17 +163,22 @@ def cli():
results = []
align_language = args["language"] if args["language"] is not None else "en" # default to loading english if not specified
align_model, align_metadata = load_align_model(align_language, device, model_name=align_model)
- for result, input_audio_path in tmp_results:
+ for result, audio_path in tmp_results:
# >> Align
+ if len(tmp_results) > 1:
+ input_audio = audio_path
+ else:
+ # lazily load audio from part 1
+ input_audio = audio
+
if align_model is not None and len(result["segments"]) > 0:
if result.get("language", "en") != align_metadata["language"]:
# load new language
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
align_model, align_metadata = load_align_model(result["language"], device)
print(">>Performing alignment...")
- result = align(result["segments"], align_model, align_metadata, input_audio_path, device,
- extend_duration=align_extend, start_from_previous=align_from_prev, interpolate_method=interpolate_method)
- results.append((result, input_audio_path))
+ result = align(result["segments"], align_model, align_metadata, input_audio, device, interpolate_method=interpolate_method)
+ results.append((result, audio_path))
# Unload align model
del align_model
@@ -210,11 +200,7 @@ def cli():
# >> Write
for result, audio_path in results:
- writer(result, audio_path)
-
- # cleanup
- if input_audio_path != audio_path:
- os.remove(input_audio_path)
+ writer(result, audio_path, writer_args)
if __name__ == "__main__":
cli()
\ No newline at end of file
diff --git a/whisperx/utils.py b/whisperx/utils.py
index 14e298b..3401a84 100644
--- a/whisperx/utils.py
+++ b/whisperx/utils.py
@@ -1,280 +1,301 @@
+import json
import os
+import re
+import sys
import zlib
-from typing import Callable, TextIO, Iterator, Tuple
-import pandas as pd
-import numpy as np
+from typing import Callable, Optional, TextIO
-def interpolate_nans(x, method='nearest'):
- if x.notnull().sum() > 1:
- return x.interpolate(method=method).ffill().bfill()
+LANGUAGES = {
+ "en": "english",
+ "zh": "chinese",
+ "de": "german",
+ "es": "spanish",
+ "ru": "russian",
+ "ko": "korean",
+ "fr": "french",
+ "ja": "japanese",
+ "pt": "portuguese",
+ "tr": "turkish",
+ "pl": "polish",
+ "ca": "catalan",
+ "nl": "dutch",
+ "ar": "arabic",
+ "sv": "swedish",
+ "it": "italian",
+ "id": "indonesian",
+ "hi": "hindi",
+ "fi": "finnish",
+ "vi": "vietnamese",
+ "he": "hebrew",
+ "uk": "ukrainian",
+ "el": "greek",
+ "ms": "malay",
+ "cs": "czech",
+ "ro": "romanian",
+ "da": "danish",
+ "hu": "hungarian",
+ "ta": "tamil",
+ "no": "norwegian",
+ "th": "thai",
+ "ur": "urdu",
+ "hr": "croatian",
+ "bg": "bulgarian",
+ "lt": "lithuanian",
+ "la": "latin",
+ "mi": "maori",
+ "ml": "malayalam",
+ "cy": "welsh",
+ "sk": "slovak",
+ "te": "telugu",
+ "fa": "persian",
+ "lv": "latvian",
+ "bn": "bengali",
+ "sr": "serbian",
+ "az": "azerbaijani",
+ "sl": "slovenian",
+ "kn": "kannada",
+ "et": "estonian",
+ "mk": "macedonian",
+ "br": "breton",
+ "eu": "basque",
+ "is": "icelandic",
+ "hy": "armenian",
+ "ne": "nepali",
+ "mn": "mongolian",
+ "bs": "bosnian",
+ "kk": "kazakh",
+ "sq": "albanian",
+ "sw": "swahili",
+ "gl": "galician",
+ "mr": "marathi",
+ "pa": "punjabi",
+ "si": "sinhala",
+ "km": "khmer",
+ "sn": "shona",
+ "yo": "yoruba",
+ "so": "somali",
+ "af": "afrikaans",
+ "oc": "occitan",
+ "ka": "georgian",
+ "be": "belarusian",
+ "tg": "tajik",
+ "sd": "sindhi",
+ "gu": "gujarati",
+ "am": "amharic",
+ "yi": "yiddish",
+ "lo": "lao",
+ "uz": "uzbek",
+ "fo": "faroese",
+ "ht": "haitian creole",
+ "ps": "pashto",
+ "tk": "turkmen",
+ "nn": "nynorsk",
+ "mt": "maltese",
+ "sa": "sanskrit",
+ "lb": "luxembourgish",
+ "my": "myanmar",
+ "bo": "tibetan",
+ "tl": "tagalog",
+ "mg": "malagasy",
+ "as": "assamese",
+ "tt": "tatar",
+ "haw": "hawaiian",
+ "ln": "lingala",
+ "ha": "hausa",
+ "ba": "bashkir",
+ "jw": "javanese",
+ "su": "sundanese",
+}
+
+# language code lookup by name, with a few language aliases
+TO_LANGUAGE_CODE = {
+ **{language: code for code, language in LANGUAGES.items()},
+ "burmese": "my",
+ "valencian": "ca",
+ "flemish": "nl",
+ "haitian": "ht",
+ "letzeburgesch": "lb",
+ "pushto": "ps",
+ "panjabi": "pa",
+ "moldavian": "ro",
+ "moldovan": "ro",
+ "sinhalese": "si",
+ "castilian": "es",
+}
+
+
+system_encoding = sys.getdefaultencoding()
+
+if system_encoding != "utf-8":
+
+ def make_safe(string):
+ # replaces any character not representable using the system default encoding with an '?',
+ # avoiding UnicodeEncodeError (https://github.com/openai/whisper/discussions/729).
+ return string.encode(system_encoding, errors="replace").decode(system_encoding)
+
+else:
+
+ def make_safe(string):
+ # utf-8 can encode any Unicode code point, so no need to do the round-trip encoding
+ return string
+
+
+def exact_div(x, y):
+ assert x % y == 0
+ return x // y
+
+
+def str2bool(string):
+ str2val = {"True": True, "False": False}
+ if string in str2val:
+ return str2val[string]
else:
- return x.ffill().bfill()
-
-
-def write_txt(transcript: Iterator[dict], file: TextIO):
- for segment in transcript:
- print(segment['text'].strip(), file=file, flush=True)
+ raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
-def write_vtt(transcript: Iterator[dict], file: TextIO):
- print("WEBVTT\n", file=file)
- for segment in transcript:
- print(
- f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
- f"{segment['text'].strip().replace('-->', '->')}\n",
- file=file,
- flush=True,
+def optional_int(string):
+ return None if string == "None" else int(string)
+
+
+def optional_float(string):
+ return None if string == "None" else float(string)
+
+
+def compression_ratio(text) -> float:
+ text_bytes = text.encode("utf-8")
+ return len(text_bytes) / len(zlib.compress(text_bytes))
+
+
+def format_timestamp(
+ seconds: float, always_include_hours: bool = False, decimal_marker: str = "."
+):
+ assert seconds >= 0, "non-negative timestamp expected"
+ milliseconds = round(seconds * 1000.0)
+
+ hours = milliseconds // 3_600_000
+ milliseconds -= hours * 3_600_000
+
+ minutes = milliseconds // 60_000
+ milliseconds -= minutes * 60_000
+
+ seconds = milliseconds // 1_000
+ milliseconds -= seconds * 1_000
+
+ hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
+ return (
+ f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
+ )
+
+
+class ResultWriter:
+ extension: str
+
+ def __init__(self, output_dir: str):
+ self.output_dir = output_dir
+
+ def __call__(self, result: dict, audio_path: str, options: dict):
+ audio_basename = os.path.basename(audio_path)
+ audio_basename = os.path.splitext(audio_basename)[0]
+ output_path = os.path.join(
+ self.output_dir, audio_basename + "." + self.extension
)
-def write_tsv(transcript: Iterator[dict], file: TextIO):
- print("start", "end", "text", sep="\t", file=file)
- for segment in transcript:
- print(segment['start'], file=file, end="\t")
- print(segment['end'], file=file, end="\t")
- print(segment['text'].strip().replace("\t", " "), file=file, flush=True)
+ with open(output_path, "w", encoding="utf-8") as f:
+ self.write_result(result, file=f, options=options)
+
+ def write_result(self, result: dict, file: TextIO, options: dict):
+ raise NotImplementedError
-def write_srt(transcript: Iterator[dict], file: TextIO):
- """
- Write a transcript to a file in SRT format.
+class WriteTXT(ResultWriter):
+ extension: str = "txt"
- Example usage:
- from pathlib import Path
- from whisper.utils import write_srt
-
- result = transcribe(model, audio_path, temperature=temperature, **args)
-
- # save SRT
- audio_basename = Path(audio_path).stem
- with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt:
- write_srt(result["segments"], file=srt)
- """
- for i, segment in enumerate(transcript, start=1):
- # write srt lines
- print(
- f"{i}\n"
- f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> "
- f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n"
- f"{segment['text'].strip().replace('-->', '->')}\n",
- file=file,
- flush=True,
- )
+ def write_result(self, result: dict, file: TextIO, options: dict):
+ for segment in result["segments"]:
+ print(segment["text"].strip(), file=file, flush=True)
-def write_ass(transcript: Iterator[dict],
- file: TextIO,
- resolution: str = "word",
- color: str = None, underline=True,
- prefmt: str = None, suffmt: str = None,
- font: str = None, font_size: int = 24,
- strip=True, **kwargs):
- """
- Credit: https://github.com/jianfch/stable-ts/blob/ff79549bd01f764427879f07ecd626c46a9a430a/stable_whisper/text_output.py
- Generate Advanced SubStation Alpha (ass) file from results to
- display both phrase-level & word-level timestamp simultaneously by:
- -using segment-level timestamps display phrases as usual
- -using word-level timestamps change formats (e.g. color/underline) of the word in the displayed segment
- Note: ass file is used in the same way as srt, vtt, etc.
- Parameters
- ----------
- transcript: dict
- results from modified model
- file: TextIO
- file object to write to
- resolution: str
- "word" or "char", timestamp resolution to highlight.
- color: str
- color code for a word at its corresponding timestamp
- reverse order hexadecimal RGB value (e.g. FF0000 is full intensity blue. Default: 00FF00)
- underline: bool
- whether to underline a word at its corresponding timestamp
- prefmt: str
- used to specify format for word-level timestamps (must be use with 'suffmt' and overrides 'color'&'underline')
- appears as such in the .ass file:
- Hi, {}how{} are you?
- reference [Appendix A: Style override codes] in http://www.tcax.org/docs/ass-specs.htm
- suffmt: str
- used to specify format for word-level timestamps (must be use with 'prefmt' and overrides 'color'&'underline')
- appears as such in the .ass file:
- Hi, {}how{} are you?
- reference [Appendix A: Style override codes] in http://www.tcax.org/docs/ass-specs.htm
- font: str
- word font (default: Arial)
- font_size: int
- word font size (default: 48)
- kwargs:
- used for format styles:
- 'Name', 'Fontname', 'Fontsize', 'PrimaryColour', 'SecondaryColour', 'OutlineColour', 'BackColour', 'Bold',
- 'Italic', 'Underline', 'StrikeOut', 'ScaleX', 'ScaleY', 'Spacing', 'Angle', 'BorderStyle', 'Outline',
- 'Shadow', 'Alignment', 'MarginL', 'MarginR', 'MarginV', 'Encoding'
+class SubtitlesWriter(ResultWriter):
+ always_include_hours: bool
+ decimal_marker: str
- """
+ def iterate_result(self, result: dict, options: dict):
+ raw_max_line_width: Optional[int] = options["max_line_width"]
+ max_line_count: Optional[int] = options["max_line_count"]
+ highlight_words: bool = options["highlight_words"]
+ max_line_width = 1000 if raw_max_line_width is None else raw_max_line_width
+ preserve_segments = max_line_count is None or raw_max_line_width is None
- fmt_style_dict = {'Name': 'Default', 'Fontname': 'Arial', 'Fontsize': '48', 'PrimaryColour': '&Hffffff',
- 'SecondaryColour': '&Hffffff', 'OutlineColour': '&H0', 'BackColour': '&H0', 'Bold': '0',
- 'Italic': '0', 'Underline': '0', 'StrikeOut': '0', 'ScaleX': '100', 'ScaleY': '100',
- 'Spacing': '0', 'Angle': '0', 'BorderStyle': '1', 'Outline': '1', 'Shadow': '0',
- 'Alignment': '2', 'MarginL': '10', 'MarginR': '10', 'MarginV': '10', 'Encoding': '0'}
+ def iterate_subtitles():
+ line_len = 0
+ line_count = 1
+ # the next subtitle to yield (a list of word timings with whitespace)
+ subtitle: list[dict] = []
+ last = result["segments"][0]["words"][0]["start"]
+ for segment in result["segments"]:
+ for i, original_timing in enumerate(segment["words"]):
+ timing = original_timing.copy()
+ long_pause = not preserve_segments and timing["start"] - last > 3.0
+ has_room = line_len + len(timing["word"]) <= max_line_width
+ seg_break = i == 0 and len(subtitle) > 0 and preserve_segments
+ if line_len > 0 and has_room and not long_pause and not seg_break:
+ # line continuation
+ line_len += len(timing["word"])
+ else:
+ # new line
+ timing["word"] = timing["word"].strip()
+ if (
+ len(subtitle) > 0
+ and max_line_count is not None
+ and (long_pause or line_count >= max_line_count)
+ or seg_break
+ ):
+ # subtitle break
+ yield subtitle
+ subtitle = []
+ line_count = 1
+ elif line_len > 0:
+ # line break
+ line_count += 1
+ timing["word"] = "\n" + timing["word"]
+ line_len = len(timing["word"].strip())
+ subtitle.append(timing)
+ last = timing["start"]
+ if len(subtitle) > 0:
+ yield subtitle
- for k, v in filter(lambda x: 'colour' in x[0].lower() and not str(x[1]).startswith('&H'), kwargs.items()):
- kwargs[k] = f'&H{kwargs[k]}'
+ if "words" in result["segments"][0]:
+ for subtitle in iterate_subtitles():
+ subtitle_start = self.format_timestamp(subtitle[0]["start"])
+ subtitle_end = self.format_timestamp(subtitle[-1]["end"])
+ subtitle_text = "".join([word["word"] for word in subtitle])
+ if highlight_words:
+ last = subtitle_start
+ all_words = [timing["word"] for timing in subtitle]
+ for i, this_word in enumerate(subtitle):
+ start = self.format_timestamp(this_word["start"])
+ end = self.format_timestamp(this_word["end"])
+ if last != start:
+ yield last, start, subtitle_text
- fmt_style_dict.update((k, v) for k, v in kwargs.items() if k in fmt_style_dict)
-
- if font:
- fmt_style_dict.update(Fontname=font)
- if font_size:
- fmt_style_dict.update(Fontsize=font_size)
-
- fmts = f'Format: {", ".join(map(str, fmt_style_dict.keys()))}'
-
- styles = f'Style: {",".join(map(str, fmt_style_dict.values()))}'
-
- ass_str = f'[Script Info]\nScriptType: v4.00+\nPlayResX: 384\nPlayResY: 288\nScaledBorderAndShadow: yes\n\n' \
- f'[V4+ Styles]\n{fmts}\n{styles}\n\n' \
- f'[Events]\nFormat: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text\n\n'
-
- if prefmt or suffmt:
- if suffmt:
- assert prefmt, 'prefmt must be used along with suffmt'
+ yield start, end, "".join(
+ [
+ re.sub(r"^(\s*)(.*)$", r"\1\2", word)
+ if j == i
+ else word
+ for j, word in enumerate(all_words)
+ ]
+ )
+ last = end
+ else:
+ yield subtitle_start, subtitle_end, subtitle_text
else:
- suffmt = r'\r'
- else:
- if not color:
- color = 'HFF00'
- underline_code = r'\u1' if underline else ''
-
- prefmt = r'{\1c&' + f'{color.upper()}&{underline_code}' + '}'
- suffmt = r'{\r}'
-
- def secs_to_hhmmss(secs: Tuple[float, int]):
- mm, ss = divmod(secs, 60)
- hh, mm = divmod(mm, 60)
- return f'{hh:0>1.0f}:{mm:0>2.0f}:{ss:0>2.2f}'
-
-
- def dialogue(chars: str, start: float, end: float, idx_0: int, idx_1: int) -> str:
- if idx_0 == -1:
- text = chars
- else:
- text = f'{chars[:idx_0]}{prefmt}{chars[idx_0:idx_1]}{suffmt}{chars[idx_1:]}'
- return f"Dialogue: 0,{secs_to_hhmmss(start)},{secs_to_hhmmss(end)}," \
- f"Default,,0,0,0,,{text.strip() if strip else text}"
-
- if resolution == "word":
- resolution_key = "word-segments"
- elif resolution == "char":
- resolution_key = "char-segments"
- else:
- raise ValueError(".ass resolution should be 'word' or 'char', not ", resolution)
-
- ass_arr = []
-
- for segment in transcript:
- # if "12" in segment['text']:
- # import pdb; pdb.set_trace()
- if resolution_key in segment:
- res_segs = pd.DataFrame(segment[resolution_key])
- prev = segment['start']
- if "speaker" in segment:
- speaker_str = f"[{segment['speaker']}]: "
- else:
- speaker_str = ""
- for cdx, crow in res_segs.iterrows():
- if not np.isnan(crow['start']):
- if resolution == "char":
- idx_0 = cdx
- idx_1 = cdx + 1
- elif resolution == "word":
- idx_0 = int(crow["segment-text-start"])
- idx_1 = int(crow["segment-text-end"])
- # fill gap
- if crow['start'] > prev:
- filler_ts = {
- "chars": speaker_str + segment['text'],
- "start": prev,
- "end": crow['start'],
- "idx_0": -1,
- "idx_1": -1
- }
-
- ass_arr.append(filler_ts)
- # highlight current word
- f_word_ts = {
- "chars": speaker_str + segment['text'],
- "start": crow['start'],
- "end": crow['end'],
- "idx_0": idx_0 + len(speaker_str),
- "idx_1": idx_1 + len(speaker_str)
- }
- ass_arr.append(f_word_ts)
- prev = crow['end']
-
- ass_str += '\n'.join(map(lambda x: dialogue(**x), ass_arr))
-
- file.write(ass_str)
-
-
-from whisper.utils import SubtitlesWriter, ResultWriter, WriteTXT, WriteVTT, WriteSRT, WriteTSV, WriteJSON, format_timestamp
-
-class WriteASS(ResultWriter):
- extension: str = "ass"
-
- def write_result(self, result: dict, file: TextIO):
- write_ass(result["segments"], file, resolution="word")
-
-class WriteASSchar(ResultWriter):
- extension: str = "ass"
-
- def write_result(self, result: dict, file: TextIO):
- write_ass(result["segments"], file, resolution="char")
-
-class WritePickle(ResultWriter):
- extension: str = "ass"
-
- def write_result(self, result: dict, file: TextIO):
- pd.DataFrame(result["segments"]).to_pickle(file)
-
-class WriteSRTWord(ResultWriter):
- extension: str = "word.srt"
- always_include_hours: bool = True
- decimal_marker: str = ","
-
- def iterate_result(self, result: dict):
- for segment in result["word_segments"]:
- segment_start = self.format_timestamp(segment["start"])
- segment_end = self.format_timestamp(segment["end"])
- segment_text = segment["text"].strip().replace("-->", "->")
-
- if word_timings := segment.get("words", None):
- all_words = [timing["word"] for timing in word_timings]
- all_words[0] = all_words[0].strip() # remove the leading space, if any
- last = segment_start
- for i, this_word in enumerate(word_timings):
- start = self.format_timestamp(this_word["start"])
- end = self.format_timestamp(this_word["end"])
- if last != start:
- yield last, start, segment_text
-
- yield start, end, "".join(
- [
- f"{word}" if j == i else word
- for j, word in enumerate(all_words)
- ]
- )
- last = end
-
- if last != segment_end:
- yield last, segment_end, segment_text
- else:
+ for segment in result["segments"]:
+ segment_start = self.format_timestamp(segment["start"])
+ segment_end = self.format_timestamp(segment["end"])
+ segment_text = segment["text"].strip().replace("-->", "->")
yield segment_start, segment_end, segment_text
- def write_result(self, result: dict, file: TextIO):
- if "word_segments" not in result:
- return
- for i, (start, end, text) in enumerate(self.iterate_result(result), start=1):
- print(f"{i}\n{start} --> {end}\n{text}\n", file=file, flush=True)
-
def format_timestamp(self, seconds: float):
return format_timestamp(
seconds=seconds,
@@ -282,36 +303,81 @@ class WriteSRTWord(ResultWriter):
decimal_marker=self.decimal_marker,
)
-def get_writer(output_format: str, output_dir: str) -> Callable[[dict, TextIO], None]:
+
+class WriteVTT(SubtitlesWriter):
+ extension: str = "vtt"
+ always_include_hours: bool = False
+ decimal_marker: str = "."
+
+ def write_result(self, result: dict, file: TextIO, options: dict):
+ print("WEBVTT\n", file=file)
+ for start, end, text in self.iterate_result(result, options):
+ print(f"{start} --> {end}\n{text}\n", file=file, flush=True)
+
+
+class WriteSRT(SubtitlesWriter):
+ extension: str = "srt"
+ always_include_hours: bool = True
+ decimal_marker: str = ","
+
+ def write_result(self, result: dict, file: TextIO, options: dict):
+ for i, (start, end, text) in enumerate(
+ self.iterate_result(result, options), start=1
+ ):
+ print(f"{i}\n{start} --> {end}\n{text}\n", file=file, flush=True)
+
+
+class WriteTSV(ResultWriter):
+ """
+ Write a transcript to a file in TSV (tab-separated values) format containing lines like:
+ \t\t
+
+ Using integer milliseconds as start and end times means there's no chance of interference from
+ an environment setting a language encoding that causes the decimal in a floating point number
+ to appear as a comma; also is faster and more efficient to parse & store, e.g., in C++.
+ """
+
+ extension: str = "tsv"
+
+ def write_result(self, result: dict, file: TextIO, options: dict):
+ print("start", "end", "text", sep="\t", file=file)
+ for segment in result["segments"]:
+ print(round(1000 * segment["start"]), file=file, end="\t")
+ print(round(1000 * segment["end"]), file=file, end="\t")
+ print(segment["text"].strip().replace("\t", " "), file=file, flush=True)
+
+
+class WriteJSON(ResultWriter):
+ extension: str = "json"
+
+ def write_result(self, result: dict, file: TextIO, options: dict):
+ json.dump(result, file)
+
+
+def get_writer(
+ output_format: str, output_dir: str
+) -> Callable[[dict, TextIO, dict], None]:
writers = {
"txt": WriteTXT,
"vtt": WriteVTT,
"srt": WriteSRT,
"tsv": WriteTSV,
- "ass": WriteASS,
- "srt-word": WriteSRTWord,
- # "ass-char": WriteASSchar,
- # "pickle": WritePickle,
- # "json": WriteJSON,
- }
-
- writers_other = {
- "pkl": WritePickle,
- "ass-char": WriteASSchar
+ "json": WriteJSON,
}
if output_format == "all":
all_writers = [writer(output_dir) for writer in writers.values()]
- def write_all(result: dict, file: TextIO):
+ def write_all(result: dict, file: TextIO, options: dict):
for writer in all_writers:
- writer(result, file)
+ writer(result, file, options)
return write_all
- if output_format in writers:
- return writers[output_format](output_dir)
- elif output_format in writers_other:
- return writers_other[output_format](output_dir)
+ return writers[output_format](output_dir)
+
+def interpolate_nans(x, method='nearest'):
+ if x.notnull().sum() > 1:
+ return x.interpolate(method=method).ffill().bfill()
else:
- raise ValueError(f"Output format '{output_format}' not supported, choose from {writers.keys()} and {writers_other.keys()}")
+ return x.ffill().bfill()
\ No newline at end of file
diff --git a/whisperx/vad.py b/whisperx/vad.py
index 933d270..42b0bfb 100644
--- a/whisperx/vad.py
+++ b/whisperx/vad.py
@@ -1,22 +1,23 @@
+import hashlib
import os
import urllib
-import pandas as pd
+from typing import Callable, Optional, Text, Union
+
import numpy as np
+import pandas as pd
import torch
-import hashlib
-from tqdm import tqdm
-from typing import Optional, Callable, Union, Text
-from pyannote.audio.core.io import AudioFile
-from pyannote.core import Annotation, Segment, SlidingWindowFeature
-from pyannote.audio.pipelines.utils import PipelineModel
from pyannote.audio import Model
+from pyannote.audio.core.io import AudioFile
from pyannote.audio.pipelines import VoiceActivityDetection
+from pyannote.audio.pipelines.utils import PipelineModel
+from pyannote.core import Annotation, Segment, SlidingWindowFeature
+from tqdm import tqdm
+
from .diarize import Segment as SegmentX
-from typing import List, Tuple, Optional
VAD_SEGMENTATION_URL = "https://whisperx.s3.eu-west-2.amazonaws.com/model_weights/segmentation/0b5b3216d60a2d32fc086b47ea8c67589aaeb26b7e07fcbe620d6d0b83e209ea/pytorch_model.bin"
-def load_vad_model(device, vad_onset, vad_offset, use_auth_token=None, model_fp=None):
+def load_vad_model(device, vad_onset=0.500, vad_offset=0.363, use_auth_token=None, model_fp=None):
model_dir = torch.hub._get_torch_home()
os.makedirs(model_dir, exist_ok = True)
if model_fp is None: