This commit is contained in:
Max Bain
2023-04-24 21:08:43 +01:00
parent da458863d7
commit 558d980535
11 changed files with 1034 additions and 846 deletions

View File

@ -1,37 +1,30 @@
import argparse
import os
import gc
import os
import warnings
from typing import TYPE_CHECKING, Optional, Tuple, Union
import numpy as np
import torch
import tempfile
import ffmpeg
from whisper.tokenizer import LANGUAGES, TO_LANGUAGE_CODE
from whisper.audio import SAMPLE_RATE
from whisper.utils import (
optional_float,
optional_int,
str2bool,
)
from .alignment import load_align_model, align
from .asr import transcribe, transcribe_with_vad
from .alignment import align, load_align_model
from .asr import load_model
from .audio import load_audio
from .diarize import DiarizationPipeline, assign_word_speakers
from .utils import get_writer
from .vad import load_vad_model
from .utils import (LANGUAGES, TO_LANGUAGE_CODE, get_writer, optional_float,
optional_int, str2bool)
def cli():
from whisper import available_models
# fmt: off
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
parser.add_argument("--model", default="small", choices=available_models(), help="name of the Whisper model to use")
parser.add_argument("--model", default="small", help="name of the Whisper model to use")
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
parser.add_argument("--batch_size", default=8, type=int, help="device to use for PyTorch inference")
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
parser.add_argument("--output_format", "-f", type=str, default="all", choices=["all", "srt", "srt-word", "vtt", "txt", "tsv", "ass", "ass-char", "pickle", "vad"], help="format of the output file; if not specified, all available formats will be produced")
parser.add_argument("--output_format", "-f", type=str, default="all", choices=["all", "srt", "vtt", "txt", "tsv", "json"], help="format of the output file; if not specified, all available formats will be produced")
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
@ -39,13 +32,10 @@ def cli():
# alignment params
parser.add_argument("--align_model", default=None, help="Name of phoneme-level ASR model to do alignment")
parser.add_argument("--align_extend", default=2, type=float, help="Seconds before and after to extend the whisper segments for alignment (if not using VAD).")
parser.add_argument("--align_from_prev", default=True, type=bool, help="Whether to clip the alignment start time of current segment to the end time of the last aligned word of the previous segment (if not using VAD)")
parser.add_argument("--interpolate_method", default="nearest", choices=["nearest", "linear", "ignore"], help="For word .srt, method to assign timestamps to non-aligned words, or merge them into neighbouring.")
parser.add_argument("--no_align", action='store_true', help="Do not perform phoneme alignment")
# vad params
parser.add_argument("--vad_filter", type=str2bool, default=True, help="Whether to pre-segment audio with VAD, highly recommended! Produces more accurate alignment + timestamp see WhisperX paper https://arxiv.org/abs/2303.00747")
parser.add_argument("--vad_onset", type=float, default=0.500, help="Onset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected")
parser.add_argument("--vad_offset", type=float, default=0.363, help="Offset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected.")
@ -69,9 +59,14 @@ def cli():
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
parser.add_argument("--word_timestamps", type=str2bool, default=False, help="(experimental) extract word-level timestamps and refine the results based on them")
parser.add_argument("--prepend_punctuations", type=str, default="\"\'“¿([{-", help="if word_timestamps is True, merge these punctuation symbols with the next word")
parser.add_argument("--append_punctuations", type=str, default="\"\'.。,!?::”)]}、", help="if word_timestamps is True, merge these punctuation symbols with the previous word")
parser.add_argument("--max_line_width", type=optional_int, default=None, help="(not possible with --no_align) the maximum number of characters in a line before breaking the line")
parser.add_argument("--max_line_count", type=optional_int, default=None, help="(requires --no_align) the maximum number of lines in a segment")
parser.add_argument("--highlight_words", type=str2bool, default=False, help="(requires --word_timestamps True) underline each word as it is spoken in srt and vtt")
# parser.add_argument("--word_timestamps", type=str2bool, default=False, help="(experimental) extract word-level timestamps and refine the results based on them")
# parser.add_argument("--prepend_punctuations", type=str, default="\"\'“¿([{-", help="if word_timestamps is True, merge these punctuation symbols with the next word")
# parser.add_argument("--append_punctuations", type=str, default="\"\'.。,!?::”)]}、", help="if word_timestamps is True, merge these punctuation symbols with the previous word")
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face Access Token to access PyAnnote gated models")
@ -81,7 +76,7 @@ def cli():
args = parser.parse_args().__dict__
model_name: str = args.pop("model")
model_dir: str = args.pop("model_dir")
batch_size: int = args.pop("batch_size")
output_dir: str = args.pop("output_dir")
output_format: str = args.pop("output_format")
device: str = args.pop("device")
@ -93,13 +88,10 @@ def cli():
os.makedirs(tmp_dir, exist_ok=True)
align_model: str = args.pop("align_model")
align_extend: float = args.pop("align_extend")
align_from_prev: bool = args.pop("align_from_prev")
interpolate_method: str = args.pop("interpolate_method")
no_align: bool = args.pop("no_align")
hf_token: str = args.pop("hf_token")
vad_filter: bool = args.pop("vad_filter")
vad_onset: float = args.pop("vad_onset")
vad_offset: float = args.pop("vad_offset")
@ -107,18 +99,7 @@ def cli():
min_speakers: int = args.pop("min_speakers")
max_speakers: int = args.pop("max_speakers")
if vad_filter:
from pyannote.audio import Pipeline
from pyannote.audio import Model, Pipeline
vad_model = load_vad_model(torch.device(device), vad_onset, vad_offset, use_auth_token=hf_token)
else:
vad_model = None
# if model_flush:
# print(">>Model flushing activated... Only loading model after ASR stage")
# del align_model
# align_model = ""
# TODO: check model loading works.
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
if args["language"] is not None:
@ -136,39 +117,43 @@ def cli():
if (threads := args.pop("threads")) > 0:
torch.set_num_threads(threads)
from whisper import load_model
asr_options = {
"beam_size": args.pop("beam_size"),
"patience": args.pop("patience"),
"length_penalty": args.pop("length_penalty"),
"temperatures": temperature,
"compression_ratio_threshold": args.pop("compression_ratio_threshold"),
"log_prob_threshold": args.pop("logprob_threshold"),
"no_speech_threshold": args.pop("no_speech_threshold"),
"condition_on_previous_text": False,
"initial_prompt": args.pop("initial_prompt"),
}
writer = get_writer(output_format, output_dir)
word_options = ["highlight_words", "max_line_count", "max_line_width"]
if no_align:
for option in word_options:
if args[option]:
parser.error(f"--{option} requires --word_timestamps True")
if args["max_line_count"] and not args["max_line_width"]:
warnings.warn("--max_line_count has no effect without --max_line_width")
writer_args = {arg: args.pop(arg) for arg in word_options}
# Part 1: VAD & ASR Loop
results = []
tmp_results = []
model = load_model(model_name, device=device, download_root=model_dir)
for audio_path in args.pop("audio"):
input_audio_path = audio_path
tfile = None
# model = load_model(model_name, device=device, download_root=model_dir)
model = load_model(model_name, device=device, language=args['language'], asr_options=asr_options, vad_options={"vad_onset": vad_onset, "vad_offset": vad_offset},)
for audio_path in args.pop("audio"):
audio = load_audio(audio_path)
# >> VAD & ASR
if vad_model is not None:
if not audio_path.endswith(".wav"):
print(">>VAD requires .wav format, converting to wav as a tempfile...")
audio_basename = os.path.splitext(os.path.basename(audio_path))[0]
if tmp_dir is not None:
input_audio_path = os.path.join(tmp_dir, audio_basename + ".wav")
else:
input_audio_path = os.path.join(os.path.dirname(audio_path), audio_basename + ".wav")
ffmpeg.input(audio_path, threads=0).output(input_audio_path, ac=1, ar=SAMPLE_RATE).run(cmd=["ffmpeg"])
print(">>Performing VAD...")
result = transcribe_with_vad(model, input_audio_path, vad_model, temperature=temperature, **args)
else:
print(">>Performing transcription...")
result = transcribe(model, input_audio_path, temperature=temperature, **args)
results.append((result, input_audio_path))
print(">>Performing transcription...")
result = model.transcribe(audio, batch_size=batch_size)
results.append((result, audio_path))
# Unload Whisper and VAD
del model
del vad_model
gc.collect()
torch.cuda.empty_cache()
@ -178,17 +163,22 @@ def cli():
results = []
align_language = args["language"] if args["language"] is not None else "en" # default to loading english if not specified
align_model, align_metadata = load_align_model(align_language, device, model_name=align_model)
for result, input_audio_path in tmp_results:
for result, audio_path in tmp_results:
# >> Align
if len(tmp_results) > 1:
input_audio = audio_path
else:
# lazily load audio from part 1
input_audio = audio
if align_model is not None and len(result["segments"]) > 0:
if result.get("language", "en") != align_metadata["language"]:
# load new language
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
align_model, align_metadata = load_align_model(result["language"], device)
print(">>Performing alignment...")
result = align(result["segments"], align_model, align_metadata, input_audio_path, device,
extend_duration=align_extend, start_from_previous=align_from_prev, interpolate_method=interpolate_method)
results.append((result, input_audio_path))
result = align(result["segments"], align_model, align_metadata, input_audio, device, interpolate_method=interpolate_method)
results.append((result, audio_path))
# Unload align model
del align_model
@ -210,11 +200,7 @@ def cli():
# >> Write
for result, audio_path in results:
writer(result, audio_path)
# cleanup
if input_audio_path != audio_path:
os.remove(input_audio_path)
writer(result, audio_path, writer_args)
if __name__ == "__main__":
cli()