mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
v3 init
This commit is contained in:
789
whisperx/asr.py
789
whisperx/asr.py
@ -1,433 +1,406 @@
|
||||
import os
|
||||
import warnings
|
||||
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
||||
from typing import List, Union
|
||||
|
||||
import ctranslate2
|
||||
import faster_whisper
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
import ffmpeg
|
||||
from whisper.audio import (
|
||||
FRAMES_PER_SECOND,
|
||||
HOP_LENGTH,
|
||||
N_FRAMES,
|
||||
N_SAMPLES,
|
||||
SAMPLE_RATE,
|
||||
CHUNK_LENGTH,
|
||||
log_mel_spectrogram,
|
||||
pad_or_trim,
|
||||
load_audio
|
||||
)
|
||||
from whisper.decoding import DecodingOptions, DecodingResult
|
||||
from whisper.timing import add_word_timestamps
|
||||
from whisper.tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
|
||||
from whisper.utils import (
|
||||
exact_div,
|
||||
format_timestamp,
|
||||
make_safe,
|
||||
)
|
||||
from transformers import Pipeline
|
||||
from transformers.pipelines.pt_utils import PipelineIterator
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from whisper.model import Whisper
|
||||
from .audio import N_SAMPLES, SAMPLE_RATE, load_audio, log_mel_spectrogram
|
||||
from .vad import load_vad_model, merge_chunks
|
||||
|
||||
from .vad import merge_chunks
|
||||
|
||||
def transcribe(
|
||||
model: "Whisper",
|
||||
audio: Union[str, np.ndarray, torch.Tensor] = None,
|
||||
mel: np.ndarray = None,
|
||||
verbose: Optional[bool] = None,
|
||||
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
||||
compression_ratio_threshold: Optional[float] = 2.4,
|
||||
logprob_threshold: Optional[float] = -1.0,
|
||||
no_speech_threshold: Optional[float] = 0.6,
|
||||
condition_on_previous_text: bool = True,
|
||||
initial_prompt: Optional[str] = None,
|
||||
word_timestamps: bool = False,
|
||||
prepend_punctuations: str = "\"'“¿([{-",
|
||||
append_punctuations: str = "\"'.。,,!!??::”)]}、",
|
||||
**decode_options,
|
||||
):
|
||||
"""
|
||||
Transcribe an audio file using Whisper.
|
||||
We redefine the Whisper transcribe function to allow mel input (for sequential slicing of audio)
|
||||
def load_model(whisper_arch, device, compute_type="float16", asr_options=None, language=None,
|
||||
vad_options=None, model=None):
|
||||
'''Load a Whisper model for inference.
|
||||
Args:
|
||||
whisper_arch: str - The name of the Whisper model to load.
|
||||
device: str - The device to load the model on.
|
||||
compute_type: str - The compute type to use for the model.
|
||||
options: dict - A dictionary of options to use for the model.
|
||||
language: str - The language of the model. (use English for now)
|
||||
Returns:
|
||||
A Whisper pipeline.
|
||||
'''
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model: Whisper
|
||||
The Whisper model instance
|
||||
if whisper_arch.endswith(".en"):
|
||||
language = "en"
|
||||
|
||||
audio: Union[str, np.ndarray, torch.Tensor]
|
||||
The path to the audio file to open, or the audio waveform
|
||||
|
||||
mel: np.ndarray
|
||||
Mel spectrogram of audio segment.
|
||||
|
||||
verbose: bool
|
||||
Whether to display the text being decoded to the console. If True, displays all the details,
|
||||
If False, displays minimal details. If None, does not display anything
|
||||
|
||||
temperature: Union[float, Tuple[float, ...]]
|
||||
Temperature for sampling. It can be a tuple of temperatures, which will be successively used
|
||||
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
|
||||
|
||||
compression_ratio_threshold: float
|
||||
If the gzip compression ratio is above this value, treat as failed
|
||||
|
||||
logprob_threshold: float
|
||||
If the average log probability over sampled tokens is below this value, treat as failed
|
||||
|
||||
no_speech_threshold: float
|
||||
If the no_speech probability is higher than this value AND the average log probability
|
||||
over sampled tokens is below `logprob_threshold`, consider the segment as silent
|
||||
|
||||
condition_on_previous_text: bool
|
||||
if True, the previous output of the model is provided as a prompt for the next window;
|
||||
disabling may make the text inconsistent across windows, but the model becomes less prone to
|
||||
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
|
||||
|
||||
word_timestamps: bool
|
||||
Extract word-level timestamps using the cross-attention pattern and dynamic time warping,
|
||||
and include the timestamps for each word in each segment.
|
||||
|
||||
prepend_punctuations: str
|
||||
If word_timestamps is True, merge these punctuation symbols with the next word
|
||||
|
||||
append_punctuations: str
|
||||
If word_timestamps is True, merge these punctuation symbols with the previous word
|
||||
|
||||
initial_prompt: Optional[str]
|
||||
Optional text to provide as a prompt for the first window. This can be used to provide, or
|
||||
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
|
||||
to make it more likely to predict those word correctly.
|
||||
|
||||
decode_options: dict
|
||||
Keyword arguments to construct `DecodingOptions` instances
|
||||
|
||||
Returns
|
||||
-------
|
||||
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
||||
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
||||
"""
|
||||
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
|
||||
if model.device == torch.device("cpu"):
|
||||
if torch.cuda.is_available():
|
||||
warnings.warn("Performing inference on CPU when CUDA is available")
|
||||
if dtype == torch.float16:
|
||||
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
|
||||
dtype = torch.float32
|
||||
|
||||
if dtype == torch.float32:
|
||||
decode_options["fp16"] = False
|
||||
|
||||
# Pad 30-seconds of silence to the input audio, for slicing
|
||||
if mel is None:
|
||||
if audio is None:
|
||||
raise ValueError("Transcribe needs either audio or mel as input, currently both are none.")
|
||||
mel = log_mel_spectrogram(audio, padding=N_SAMPLES)
|
||||
content_frames = mel.shape[-1] - N_FRAMES
|
||||
|
||||
if decode_options.get("language", None) is None:
|
||||
if not model.is_multilingual:
|
||||
decode_options["language"] = "en"
|
||||
else:
|
||||
if verbose:
|
||||
print(
|
||||
"Detecting language using up to the first 30 seconds. Use `--language` to specify the language"
|
||||
)
|
||||
mel_segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
|
||||
_, probs = model.detect_language(mel_segment)
|
||||
decode_options["language"] = max(probs, key=probs.get)
|
||||
if verbose is not None:
|
||||
print(
|
||||
f"Detected language: {LANGUAGES[decode_options['language']].title()}"
|
||||
)
|
||||
|
||||
language: str = decode_options["language"]
|
||||
task: str = decode_options.get("task", "transcribe")
|
||||
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=task)
|
||||
|
||||
if word_timestamps and task == "translate":
|
||||
warnings.warn("Word-level timestamps on translations may not be reliable.")
|
||||
|
||||
def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:
|
||||
temperatures = (
|
||||
[temperature] if isinstance(temperature, (int, float)) else temperature
|
||||
)
|
||||
decode_result = None
|
||||
|
||||
for t in temperatures:
|
||||
kwargs = {**decode_options}
|
||||
if t > 0:
|
||||
# disable beam_size and patience when t > 0
|
||||
kwargs.pop("beam_size", None)
|
||||
kwargs.pop("patience", None)
|
||||
else:
|
||||
# disable best_of when t == 0
|
||||
kwargs.pop("best_of", None)
|
||||
|
||||
options = DecodingOptions(**kwargs, temperature=t)
|
||||
decode_result = model.decode(segment, options)
|
||||
|
||||
needs_fallback = False
|
||||
if (
|
||||
compression_ratio_threshold is not None
|
||||
and decode_result.compression_ratio > compression_ratio_threshold
|
||||
):
|
||||
needs_fallback = True # too repetitive
|
||||
if (
|
||||
logprob_threshold is not None
|
||||
and decode_result.avg_logprob < logprob_threshold
|
||||
):
|
||||
needs_fallback = True # average log probability is too low
|
||||
|
||||
if not needs_fallback:
|
||||
break
|
||||
|
||||
return decode_result
|
||||
|
||||
seek = 0
|
||||
input_stride = exact_div(
|
||||
N_FRAMES, model.dims.n_audio_ctx
|
||||
) # mel frames per output token: 2
|
||||
time_precision = (
|
||||
input_stride * HOP_LENGTH / SAMPLE_RATE
|
||||
) # time per output token: 0.02 (seconds)
|
||||
all_tokens = []
|
||||
all_segments = []
|
||||
prompt_reset_since = 0
|
||||
|
||||
if initial_prompt is not None:
|
||||
initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
|
||||
all_tokens.extend(initial_prompt_tokens)
|
||||
model = WhisperModel(whisper_arch, device=device, compute_type=compute_type)
|
||||
if language is not None:
|
||||
tokenizer = faster_whisper.tokenizer.Tokenizer(model.hf_tokenizer, model.model.is_multilingual, task="transcribe", language=language)
|
||||
else:
|
||||
initial_prompt_tokens = []
|
||||
print("No language specified, language will be first be detected for each audio file (increases inference time).")
|
||||
tokenizer = None
|
||||
|
||||
def new_segment(
|
||||
*, start: float, end: float, tokens: torch.Tensor, result: DecodingResult
|
||||
default_asr_options = {
|
||||
"beam_size": 5,
|
||||
"best_of": 5,
|
||||
"patience": 1,
|
||||
"length_penalty": 1,
|
||||
"temperatures": [0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
|
||||
"compression_ratio_threshold": 2.4,
|
||||
"log_prob_threshold": -1.0,
|
||||
"no_speech_threshold": 0.6,
|
||||
"condition_on_previous_text": False,
|
||||
"initial_prompt": None,
|
||||
"prefix": None,
|
||||
"suppress_blank": True,
|
||||
"suppress_tokens": [-1],
|
||||
"without_timestamps": True,
|
||||
"max_initial_timestamp": 0.0,
|
||||
"word_timestamps": False,
|
||||
"prepend_punctuations": "\"'“¿([{-",
|
||||
"append_punctuations": "\"'.。,,!!??::”)]}、"
|
||||
}
|
||||
|
||||
if asr_options is not None:
|
||||
default_asr_options.update(asr_options)
|
||||
default_asr_options = faster_whisper.transcribe.TranscriptionOptions(**default_asr_options)
|
||||
|
||||
default_vad_options = {
|
||||
"vad_onset": 0.500,
|
||||
"vad_offset": 0.363
|
||||
}
|
||||
|
||||
if vad_options is not None:
|
||||
default_vad_options.update(vad_options)
|
||||
|
||||
vad_model = load_vad_model(torch.device(device), use_auth_token=None, **default_vad_options)
|
||||
|
||||
return FasterWhisperPipeline(model, vad_model, default_asr_options, tokenizer)
|
||||
|
||||
|
||||
|
||||
class WhisperModel(faster_whisper.WhisperModel):
|
||||
'''
|
||||
FasterWhisperModel provides batched inference for faster-whisper.
|
||||
Currently only works in non-timestamp mode.
|
||||
'''
|
||||
|
||||
def generate_segment_batched(self, features: np.ndarray, tokenizer: faster_whisper.tokenizer.Tokenizer, options: faster_whisper.transcribe.TranscriptionOptions, encoder_output = None):
|
||||
batch_size = features.shape[0]
|
||||
all_tokens = []
|
||||
prompt_reset_since = 0
|
||||
if options.initial_prompt is not None:
|
||||
initial_prompt = " " + options.initial_prompt.strip()
|
||||
initial_prompt_tokens = tokenizer.encode(initial_prompt)
|
||||
all_tokens.extend(initial_prompt_tokens)
|
||||
previous_tokens = all_tokens[prompt_reset_since:]
|
||||
prompt = self.get_prompt(
|
||||
tokenizer,
|
||||
previous_tokens,
|
||||
without_timestamps=options.without_timestamps,
|
||||
prefix=options.prefix,
|
||||
)
|
||||
|
||||
encoder_output = self.encode(features)
|
||||
|
||||
max_initial_timestamp_index = int(
|
||||
round(options.max_initial_timestamp / self.time_precision)
|
||||
)
|
||||
|
||||
result = self.model.generate(
|
||||
encoder_output,
|
||||
[prompt] * batch_size,
|
||||
# length_penalty=options.length_penalty,
|
||||
# max_length=self.max_length,
|
||||
# return_scores=True,
|
||||
# return_no_speech_prob=True,
|
||||
# suppress_blank=options.suppress_blank,
|
||||
# suppress_tokens=options.suppress_tokens,
|
||||
# max_initial_timestamp_index=max_initial_timestamp_index,
|
||||
)
|
||||
|
||||
tokens_batch = [x.sequences_ids[0] for x in result]
|
||||
|
||||
def decode_batch(tokens: List[List[int]]) -> str:
|
||||
res = []
|
||||
for tk in tokens:
|
||||
res.append([token for token in tk if token < tokenizer.eot])
|
||||
# text_tokens = [token for token in tokens if token < self.eot]
|
||||
return tokenizer.tokenizer.decode_batch(res)
|
||||
|
||||
text = decode_batch(tokens_batch)
|
||||
|
||||
return text
|
||||
|
||||
def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
|
||||
# When the model is running on multiple GPUs, the encoder output should be moved
|
||||
# to the CPU since we don't know which GPU will handle the next job.
|
||||
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
|
||||
# unsqueeze if batch size = 1
|
||||
if len(features.shape) == 2:
|
||||
features = np.expand_dims(features, 0)
|
||||
features = faster_whisper.transcribe.get_ctranslate2_storage(features)
|
||||
|
||||
return self.model.encode(features, to_cpu=to_cpu)
|
||||
|
||||
class FasterWhisperPipeline(Pipeline):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
vad,
|
||||
options,
|
||||
tokenizer=None,
|
||||
device: Union[int, str, "torch.device"] = -1,
|
||||
framework = "pt",
|
||||
**kwargs
|
||||
):
|
||||
tokens = tokens.tolist()
|
||||
text_tokens = [token for token in tokens if token < tokenizer.eot]
|
||||
return {
|
||||
"seek": seek,
|
||||
"start": start,
|
||||
"end": end,
|
||||
"text": tokenizer.decode(text_tokens),
|
||||
"tokens": tokens,
|
||||
"temperature": result.temperature,
|
||||
"avg_logprob": result.avg_logprob,
|
||||
"compression_ratio": result.compression_ratio,
|
||||
"no_speech_prob": result.no_speech_prob,
|
||||
}
|
||||
|
||||
|
||||
# show the progress bar when verbose is False (if True, transcribed text will be printed)
|
||||
with tqdm.tqdm(
|
||||
total=content_frames, unit="frames", disable=verbose is not False
|
||||
) as pbar:
|
||||
while seek < content_frames:
|
||||
time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
|
||||
mel_segment = mel[:, seek : seek + N_FRAMES]
|
||||
segment_size = min(N_FRAMES, content_frames - seek)
|
||||
segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
|
||||
mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)
|
||||
|
||||
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
||||
result: DecodingResult = decode_with_fallback(mel_segment)
|
||||
tokens = torch.tensor(result.tokens)
|
||||
if no_speech_threshold is not None:
|
||||
# no voice activity check
|
||||
should_skip = result.no_speech_prob > no_speech_threshold
|
||||
if (
|
||||
logprob_threshold is not None
|
||||
and result.avg_logprob > logprob_threshold
|
||||
):
|
||||
# don't skip if the logprob is high enough, despite the no_speech_prob
|
||||
should_skip = False
|
||||
|
||||
if should_skip:
|
||||
seek += segment_size # fast-forward to the next segment boundary
|
||||
continue
|
||||
|
||||
previous_seek = seek
|
||||
current_segments = []
|
||||
|
||||
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
|
||||
single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
|
||||
|
||||
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
|
||||
consecutive.add_(1)
|
||||
if len(consecutive) > 0:
|
||||
# if the output contains two consecutive timestamp tokens
|
||||
slices = consecutive.tolist()
|
||||
if single_timestamp_ending:
|
||||
slices.append(len(tokens))
|
||||
|
||||
last_slice = 0
|
||||
for current_slice in slices:
|
||||
sliced_tokens = tokens[last_slice:current_slice]
|
||||
start_timestamp_pos = (
|
||||
sliced_tokens[0].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
end_timestamp_pos = (
|
||||
sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
|
||||
# clamp end-time to at least be 1 frame after start-time
|
||||
end_timestamp_pos = max(end_timestamp_pos, start_timestamp_pos + time_precision)
|
||||
|
||||
current_segments.append(
|
||||
new_segment(
|
||||
start=time_offset + start_timestamp_pos * time_precision,
|
||||
end=time_offset + end_timestamp_pos * time_precision,
|
||||
tokens=sliced_tokens,
|
||||
result=result,
|
||||
)
|
||||
)
|
||||
last_slice = current_slice
|
||||
|
||||
if single_timestamp_ending:
|
||||
# single timestamp at the end means no speech after the last timestamp.
|
||||
seek += segment_size
|
||||
else:
|
||||
# otherwise, ignore the unfinished segment and seek to the last timestamp
|
||||
last_timestamp_pos = (
|
||||
tokens[last_slice - 1].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
seek += last_timestamp_pos * input_stride
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self.options = options
|
||||
self._batch_size = kwargs.pop("batch_size", None)
|
||||
self._num_workers = 1
|
||||
self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs)
|
||||
self.call_count = 0
|
||||
self.framework = framework
|
||||
if self.framework == "pt":
|
||||
if isinstance(device, torch.device):
|
||||
self.device = device
|
||||
elif isinstance(device, str):
|
||||
self.device = torch.device(device)
|
||||
elif device < 0:
|
||||
self.device = torch.device("cpu")
|
||||
else:
|
||||
duration = segment_duration
|
||||
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
||||
if (
|
||||
len(timestamps) > 0
|
||||
and timestamps[-1].item() != tokenizer.timestamp_begin
|
||||
):
|
||||
# no consecutive timestamps but it has a timestamp; use the last one.
|
||||
last_timestamp_pos = (
|
||||
timestamps[-1].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
duration = last_timestamp_pos * time_precision
|
||||
self.device = torch.device(f"cuda:{device}")
|
||||
else:
|
||||
self.device = device
|
||||
|
||||
super(Pipeline, self).__init__()
|
||||
self.vad_model = vad
|
||||
|
||||
current_segments.append(
|
||||
new_segment(
|
||||
start=time_offset,
|
||||
end=time_offset + duration,
|
||||
tokens=tokens,
|
||||
result=result,
|
||||
)
|
||||
)
|
||||
seek += segment_size
|
||||
def _sanitize_parameters(self, **kwargs):
|
||||
preprocess_kwargs = {}
|
||||
if "tokenizer" in kwargs:
|
||||
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
|
||||
return preprocess_kwargs, {}, {}
|
||||
|
||||
if not condition_on_previous_text or result.temperature > 0.5:
|
||||
# do not feed the prompt tokens if a high temperature was used
|
||||
prompt_reset_since = len(all_tokens)
|
||||
def preprocess(self, audio):
|
||||
audio = audio['inputs']
|
||||
features = log_mel_spectrogram(audio, padding=N_SAMPLES - audio.shape[0])
|
||||
return {'inputs': features}
|
||||
|
||||
if word_timestamps:
|
||||
add_word_timestamps(
|
||||
segments=current_segments,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
mel=mel_segment,
|
||||
num_frames=segment_size,
|
||||
prepend_punctuations=prepend_punctuations,
|
||||
append_punctuations=append_punctuations,
|
||||
)
|
||||
word_end_timestamps = [
|
||||
w["end"] for s in current_segments for w in s["words"]
|
||||
]
|
||||
if not single_timestamp_ending and len(word_end_timestamps) > 0:
|
||||
seek_shift = round(
|
||||
(word_end_timestamps[-1] - time_offset) * FRAMES_PER_SECOND
|
||||
)
|
||||
if seek_shift > 0:
|
||||
seek = previous_seek + seek_shift
|
||||
def _forward(self, model_inputs):
|
||||
outputs = self.model.generate_segment_batched(model_inputs['inputs'], self.tokenizer, self.options)
|
||||
return {'text': outputs}
|
||||
|
||||
def postprocess(self, model_outputs):
|
||||
return model_outputs
|
||||
|
||||
if verbose:
|
||||
for segment in current_segments:
|
||||
start, end, text = segment["start"], segment["end"], segment["text"]
|
||||
line = f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}"
|
||||
print(make_safe(line))
|
||||
def get_iterator(
|
||||
self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
|
||||
):
|
||||
dataset = PipelineIterator(inputs, self.preprocess, preprocess_params)
|
||||
if "TOKENIZERS_PARALLELISM" not in os.environ:
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
# TODO hack by collating feature_extractor and image_processor
|
||||
|
||||
# if a segment is instantaneous or does not contain text, clear it
|
||||
for i, segment in enumerate(current_segments):
|
||||
if segment["start"] == segment["end"] or segment["text"].strip() == "":
|
||||
segment["text"] = ""
|
||||
segment["tokens"] = []
|
||||
segment["words"] = []
|
||||
def stack(items):
|
||||
return {'inputs': torch.stack([x['inputs'] for x in items])}
|
||||
dataloader = torch.utils.data.DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=stack)
|
||||
model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size)
|
||||
final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params)
|
||||
return final_iterator
|
||||
|
||||
all_segments.extend(
|
||||
[
|
||||
{"id": i, **segment}
|
||||
for i, segment in enumerate(
|
||||
current_segments, start=len(all_segments)
|
||||
)
|
||||
]
|
||||
)
|
||||
all_tokens.extend(
|
||||
[token for segment in current_segments for token in segment["tokens"]]
|
||||
)
|
||||
def transcribe(
|
||||
self, audio: Union[str, np.ndarray], batch_size=None
|
||||
):
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
|
||||
def data(audio, segments):
|
||||
for seg in segments:
|
||||
f1 = int(seg['start'] * SAMPLE_RATE)
|
||||
f2 = int(seg['end'] * SAMPLE_RATE)
|
||||
# print(f2-f1)
|
||||
yield {'inputs': audio[f1:f2]}
|
||||
|
||||
# update progress bar
|
||||
pbar.update(min(content_frames, seek) - previous_seek)
|
||||
vad_segments = self.vad_model({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": SAMPLE_RATE})
|
||||
vad_segments = merge_chunks(vad_segments, 30)
|
||||
|
||||
del_tokenizer = False
|
||||
if self.tokenizer is None:
|
||||
language = self.detect_language(audio)
|
||||
self.tokenizer = faster_whisper.tokenizer.Tokenizer(self.model.hf_tokenizer, self.model.model.is_multilingual, task="transcribe", language=language)
|
||||
del_tokenizer = True
|
||||
else:
|
||||
language = self.tokenizer.language_code
|
||||
|
||||
return dict(
|
||||
text=tokenizer.decode(all_tokens[len(initial_prompt_tokens) :]),
|
||||
segments=all_segments,
|
||||
language=language,
|
||||
)
|
||||
|
||||
|
||||
def transcribe_with_vad(
|
||||
model: "Whisper",
|
||||
audio: str,
|
||||
vad_pipeline,
|
||||
mel = None,
|
||||
verbose: Optional[bool] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Transcribe per VAD segment
|
||||
"""
|
||||
|
||||
vad_segments = vad_pipeline(audio)
|
||||
|
||||
# if not torch.is_tensor(audio):
|
||||
# if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
audio = torch.from_numpy(audio)
|
||||
|
||||
prev = 0
|
||||
output = {"segments": []}
|
||||
|
||||
# merge segments to approx 30s inputs to make whisper most appropraite
|
||||
vad_segments = merge_chunks(vad_segments, chunk_size=CHUNK_LENGTH)
|
||||
if len(vad_segments) == 0:
|
||||
return output
|
||||
|
||||
print(">>Performing transcription...")
|
||||
for sdx, seg_t in enumerate(vad_segments):
|
||||
if verbose:
|
||||
print(f"~~ Transcribing VAD chunk: ({format_timestamp(seg_t['start'])} --> {format_timestamp(seg_t['end'])}) ~~")
|
||||
seg_f_start, seg_f_end = int(seg_t["start"] * SAMPLE_RATE), int(seg_t["end"] * SAMPLE_RATE)
|
||||
local_f_start, local_f_end = seg_f_start - prev, seg_f_end - prev
|
||||
audio = audio[local_f_start:] # seek forward
|
||||
seg_audio = audio[:local_f_end-local_f_start] # seek forward
|
||||
prev = seg_f_start
|
||||
local_mel = log_mel_spectrogram(seg_audio, padding=N_SAMPLES)
|
||||
# need to pad
|
||||
|
||||
result = transcribe(model, audio, mel=local_mel, verbose=verbose, **kwargs)
|
||||
seg_t["text"] = result["text"]
|
||||
output["segments"].append(
|
||||
{
|
||||
"start": seg_t["start"],
|
||||
"end": seg_t["end"],
|
||||
"language": result["language"],
|
||||
"text": result["text"],
|
||||
"seg-text": [x["text"] for x in result["segments"]],
|
||||
"seg-start": [x["start"] for x in result["segments"]],
|
||||
"seg-end": [x["end"] for x in result["segments"]],
|
||||
segments = []
|
||||
batch_size = batch_size or self._batch_size
|
||||
for idx, out in enumerate(self.__call__(data(audio, vad_segments), batch_size=batch_size)):
|
||||
text = out['text']
|
||||
if batch_size in [0, 1, None]:
|
||||
text = text[0]
|
||||
segments.append(
|
||||
{
|
||||
"text": out['text'],
|
||||
"start": round(vad_segments[idx]['start'], 3),
|
||||
"end": round(vad_segments[idx]['end'], 3)
|
||||
}
|
||||
)
|
||||
|
||||
if del_tokenizer:
|
||||
self.tokenizer = None
|
||||
|
||||
output["language"] = output["segments"][0]["language"]
|
||||
return {"segments": segments, "language": language}
|
||||
|
||||
return output
|
||||
|
||||
def detect_language(self, audio: np.ndarray):
|
||||
segment = log_mel_spectrogram(audio[: N_SAMPLES], padding=0)
|
||||
encoder_output = self.model.encode(segment)
|
||||
results = self.model.model.detect_language(encoder_output)
|
||||
language_token, language_probability = results[0][0]
|
||||
language = language_token[2:-2]
|
||||
print(f"Detected language: {language} ({language_probability:.2f}) in first 30s of audio...")
|
||||
return language
|
||||
|
||||
if __name__ == "__main__":
|
||||
main_type = "simple"
|
||||
import time
|
||||
|
||||
import jiwer
|
||||
from tqdm import tqdm
|
||||
from whisper.normalizers import EnglishTextNormalizer
|
||||
|
||||
from benchmark.tedlium import parse_tedlium_annos
|
||||
|
||||
if main_type == "complex":
|
||||
from faster_whisper.tokenizer import Tokenizer
|
||||
from faster_whisper.transcribe import TranscriptionOptions
|
||||
from faster_whisper.vad import (SpeechTimestampsMap,
|
||||
get_speech_timestamps)
|
||||
|
||||
from whisperx.vad import load_vad_model, merge_chunks
|
||||
|
||||
from .audio import SAMPLE_RATE, load_audio, log_mel_spectrogram
|
||||
faster_t_options = TranscriptionOptions(
|
||||
beam_size=5,
|
||||
best_of=5,
|
||||
patience=1,
|
||||
length_penalty=1,
|
||||
temperatures=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
|
||||
compression_ratio_threshold=2.4,
|
||||
log_prob_threshold=-1.0,
|
||||
no_speech_threshold=0.6,
|
||||
condition_on_previous_text=False,
|
||||
initial_prompt=None,
|
||||
prefix=None,
|
||||
suppress_blank=True,
|
||||
suppress_tokens=[-1],
|
||||
without_timestamps=True,
|
||||
max_initial_timestamp=0.0,
|
||||
word_timestamps=False,
|
||||
prepend_punctuations="\"'“¿([{-",
|
||||
append_punctuations="\"'.。,,!!??::”)]}、"
|
||||
)
|
||||
whisper_arch = "large-v2"
|
||||
device = "cuda"
|
||||
batch_size = 16
|
||||
model = WhisperModel(whisper_arch, device="cuda", compute_type="float16",)
|
||||
tokenizer = Tokenizer(model.hf_tokenizer, model.model.is_multilingual, task="transcribe", language="en")
|
||||
model = FasterWhisperPipeline(model, tokenizer, faster_t_options, device=-1)
|
||||
fn = "DanielKahneman_2010.wav"
|
||||
wav_dir = f"/tmp/test/wav/"
|
||||
vad_model = load_vad_model("cuda", 0.6, 0.3)
|
||||
audio = load_audio(os.path.join(wav_dir, fn))
|
||||
vad_segments = vad_model({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": SAMPLE_RATE})
|
||||
vad_segments = merge_chunks(vad_segments, 30)
|
||||
|
||||
def data(audio, segments):
|
||||
for seg in segments:
|
||||
f1 = int(seg['start'] * SAMPLE_RATE)
|
||||
f2 = int(seg['end'] * SAMPLE_RATE)
|
||||
# print(f2-f1)
|
||||
yield {'inputs': audio[f1:f2]}
|
||||
vad_method="pyannote"
|
||||
|
||||
wav_dir = f"/tmp/test/wav/"
|
||||
wer_li = []
|
||||
time_li = []
|
||||
for fn in os.listdir(wav_dir):
|
||||
if fn == "RobertGupta_2010U.wav":
|
||||
continue
|
||||
base_fn = fn.split('.')[0]
|
||||
audio_fp = os.path.join(wav_dir, fn)
|
||||
|
||||
audio = load_audio(audio_fp)
|
||||
t1 = time.time()
|
||||
if vad_method == "pyannote":
|
||||
vad_segments = vad_model({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": SAMPLE_RATE})
|
||||
vad_segments = merge_chunks(vad_segments, 30)
|
||||
elif vad_method == "silero":
|
||||
vad_segments = get_speech_timestamps(audio, threshold=0.5, max_speech_duration_s=30)
|
||||
vad_segments = [{"start": x["start"] / SAMPLE_RATE, "end": x["end"] / SAMPLE_RATE} for x in vad_segments]
|
||||
new_segs = []
|
||||
curr_start = vad_segments[0]['start']
|
||||
curr_end = vad_segments[0]['end']
|
||||
for seg in vad_segments[1:]:
|
||||
if seg['end'] - curr_start > 30:
|
||||
new_segs.append({"start": curr_start, "end": curr_end})
|
||||
curr_start = seg['start']
|
||||
curr_end = seg['end']
|
||||
else:
|
||||
curr_end = seg['end']
|
||||
new_segs.append({"start": curr_start, "end": curr_end})
|
||||
vad_segments = new_segs
|
||||
text = []
|
||||
# for idx, out in tqdm(enumerate(model(data(audio_fp, vad_segments), batch_size=batch_size)), total=len(vad_segments)):
|
||||
for idx, out in enumerate(model(data(audio, vad_segments), batch_size=batch_size)):
|
||||
text.append(out['text'])
|
||||
t2 = time.time()
|
||||
if batch_size == 1:
|
||||
text = [x[0] for x in text]
|
||||
text = " ".join(text)
|
||||
|
||||
normalizer = EnglishTextNormalizer()
|
||||
text = normalizer(text)
|
||||
gt_corpus = normalizer(parse_tedlium_annos(base_fn, "/tmp/test/"))
|
||||
|
||||
wer_result = jiwer.wer(gt_corpus, text)
|
||||
print("WER: %.2f \t time: %.2f \t [%s]" % (wer_result * 100, t2-t1, fn))
|
||||
|
||||
wer_li.append(wer_result)
|
||||
time_li.append(t2-t1)
|
||||
print("# Avg Mean...")
|
||||
print("WER: %.2f" % (sum(wer_li) * 100/len(wer_li)))
|
||||
print("Time: %.2f" % (sum(time_li)/len(time_li)))
|
||||
elif main_type == "simple":
|
||||
model = load_model(
|
||||
"large-v2",
|
||||
device="cuda",
|
||||
language="en",
|
||||
)
|
||||
|
||||
wav_dir = f"/tmp/test/wav/"
|
||||
wer_li = []
|
||||
time_li = []
|
||||
for fn in os.listdir(wav_dir):
|
||||
if fn == "RobertGupta_2010U.wav":
|
||||
continue
|
||||
# fn = "DanielKahneman_2010.wav"
|
||||
base_fn = fn.split('.')[0]
|
||||
audio_fp = os.path.join(wav_dir, fn)
|
||||
|
||||
audio = load_audio(audio_fp)
|
||||
t1 = time.time()
|
||||
out = model.transcribe(audio_fp, batch_size=8)["segments"]
|
||||
t2 = time.time()
|
||||
|
||||
text = " ".join([x['text'] for x in out])
|
||||
normalizer = EnglishTextNormalizer()
|
||||
text = normalizer(text)
|
||||
gt_corpus = normalizer(parse_tedlium_annos(base_fn, "/tmp/test/"))
|
||||
|
||||
wer_result = jiwer.wer(gt_corpus, text)
|
||||
print("WER: %.2f \t time: %.2f \t [%s]" % (wer_result * 100, t2-t1, fn))
|
||||
|
||||
wer_li.append(wer_result)
|
||||
time_li.append(t2-t1)
|
||||
print("# Avg Mean...")
|
||||
print("WER: %.2f" % (sum(wer_li) * 100/len(wer_li)))
|
||||
print("Time: %.2f" % (sum(time_li)/len(time_li)))
|
||||
|
Reference in New Issue
Block a user