mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
Add torch compile to log mel spectrogram
This commit is contained in:
@ -181,6 +181,9 @@ class FasterWhisperPipeline(Pipeline):
|
|||||||
|
|
||||||
def preprocess(self, audio):
|
def preprocess(self, audio):
|
||||||
audio = audio['inputs']
|
audio = audio['inputs']
|
||||||
|
if isinstance(audio, np.ndarray):
|
||||||
|
audio = torch.from_numpy(audio)
|
||||||
|
|
||||||
features = log_mel_spectrogram(audio, padding=N_SAMPLES - audio.shape[0])
|
features = log_mel_spectrogram(audio, padding=N_SAMPLES - audio.shape[0])
|
||||||
return {'inputs': features}
|
return {'inputs': features}
|
||||||
|
|
||||||
@ -253,7 +256,7 @@ class FasterWhisperPipeline(Pipeline):
|
|||||||
def detect_language(self, audio: np.ndarray):
|
def detect_language(self, audio: np.ndarray):
|
||||||
if audio.shape[0] < N_SAMPLES:
|
if audio.shape[0] < N_SAMPLES:
|
||||||
print("Warning: audio is shorter than 30s, language detection may be inaccurate.")
|
print("Warning: audio is shorter than 30s, language detection may be inaccurate.")
|
||||||
segment = log_mel_spectrogram(audio[: N_SAMPLES],
|
segment = log_mel_spectrogram(torch.from_numpy(audio[:N_SAMPLES]),
|
||||||
padding=0 if audio.shape[0] >= N_SAMPLES else N_SAMPLES - audio.shape[0])
|
padding=0 if audio.shape[0] >= N_SAMPLES else N_SAMPLES - audio.shape[0])
|
||||||
encoder_output = self.model.encode(segment)
|
encoder_output = self.model.encode(segment)
|
||||||
results = self.model.model.detect_language(encoder_output)
|
results = self.model.model.detect_language(encoder_output)
|
||||||
|
@ -22,6 +22,12 @@ N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
|
|||||||
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
||||||
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
||||||
|
|
||||||
|
with np.load(
|
||||||
|
os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
|
||||||
|
) as f:
|
||||||
|
MEL_FILTERS = torch.from_numpy(f[f"mel_{80}"])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||||
"""
|
"""
|
||||||
@ -79,27 +85,9 @@ def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
|||||||
return array
|
return array
|
||||||
|
|
||||||
|
|
||||||
@lru_cache(maxsize=None)
|
@torch.compile(fullgraph=True)
|
||||||
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
|
||||||
Allows decoupling librosa dependency; saved using:
|
|
||||||
|
|
||||||
np.savez_compressed(
|
|
||||||
"mel_filters.npz",
|
|
||||||
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
|
||||||
)
|
|
||||||
"""
|
|
||||||
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
|
|
||||||
with np.load(
|
|
||||||
os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
|
|
||||||
) as f:
|
|
||||||
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
|
|
||||||
|
|
||||||
|
|
||||||
def log_mel_spectrogram(
|
def log_mel_spectrogram(
|
||||||
audio: Union[str, np.ndarray, torch.Tensor],
|
audio: torch.Tensor,
|
||||||
n_mels: int = N_MELS,
|
|
||||||
padding: int = 0,
|
padding: int = 0,
|
||||||
device: Optional[Union[str, torch.device]] = None,
|
device: Optional[Union[str, torch.device]] = None,
|
||||||
):
|
):
|
||||||
@ -108,7 +96,7 @@ def log_mel_spectrogram(
|
|||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
audio: torch.Tensor, shape = (*)
|
||||||
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
||||||
|
|
||||||
n_mels: int
|
n_mels: int
|
||||||
@ -125,21 +113,19 @@ def log_mel_spectrogram(
|
|||||||
torch.Tensor, shape = (80, n_frames)
|
torch.Tensor, shape = (80, n_frames)
|
||||||
A Tensor that contains the Mel spectrogram
|
A Tensor that contains the Mel spectrogram
|
||||||
"""
|
"""
|
||||||
if not torch.is_tensor(audio):
|
global MEL_FILTERS
|
||||||
if isinstance(audio, str):
|
|
||||||
audio = load_audio(audio)
|
|
||||||
audio = torch.from_numpy(audio)
|
|
||||||
|
|
||||||
if device is not None:
|
if device is not None:
|
||||||
audio = audio.to(device)
|
audio = audio.to(device)
|
||||||
if padding > 0:
|
if padding > 0:
|
||||||
audio = F.pad(audio, (0, padding))
|
audio = F.pad(audio, (0, padding))
|
||||||
window = torch.hann_window(N_FFT).to(audio.device)
|
window = torch.hann_window(N_FFT).to(audio.device)
|
||||||
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
|
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=False)
|
||||||
magnitudes = stft[..., :-1].abs() ** 2
|
# Square the real and imaginary components and sum them together, similar to torch.abs() on complex tensors
|
||||||
|
magnitudes = (stft[:, :-1, :] ** 2).sum(dim=-1)
|
||||||
|
|
||||||
filters = mel_filters(audio.device, n_mels)
|
MEL_FILTERS = MEL_FILTERS.to(audio.device)
|
||||||
mel_spec = filters @ magnitudes
|
mel_spec = MEL_FILTERS @ magnitudes
|
||||||
|
|
||||||
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
||||||
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
||||||
|
Reference in New Issue
Block a user