Add torch compile to log mel spectrogram

This commit is contained in:
Simon
2023-05-03 23:17:44 +02:00
parent 2a6830492c
commit 2d59eb9726
2 changed files with 19 additions and 30 deletions

View File

@ -181,6 +181,9 @@ class FasterWhisperPipeline(Pipeline):
def preprocess(self, audio):
audio = audio['inputs']
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio)
features = log_mel_spectrogram(audio, padding=N_SAMPLES - audio.shape[0])
return {'inputs': features}
@ -253,7 +256,7 @@ class FasterWhisperPipeline(Pipeline):
def detect_language(self, audio: np.ndarray):
if audio.shape[0] < N_SAMPLES:
print("Warning: audio is shorter than 30s, language detection may be inaccurate.")
segment = log_mel_spectrogram(audio[: N_SAMPLES],
segment = log_mel_spectrogram(torch.from_numpy(audio[:N_SAMPLES]),
padding=0 if audio.shape[0] >= N_SAMPLES else N_SAMPLES - audio.shape[0])
encoder_output = self.model.encode(segment)
results = self.model.model.detect_language(encoder_output)

View File

@ -22,6 +22,12 @@ N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
with np.load(
os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
) as f:
MEL_FILTERS = torch.from_numpy(f[f"mel_{80}"])
def load_audio(file: str, sr: int = SAMPLE_RATE):
"""
@ -79,27 +85,9 @@ def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
return array
@lru_cache(maxsize=None)
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
"""
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
Allows decoupling librosa dependency; saved using:
np.savez_compressed(
"mel_filters.npz",
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
)
"""
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
with np.load(
os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
) as f:
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
@torch.compile(fullgraph=True)
def log_mel_spectrogram(
audio: Union[str, np.ndarray, torch.Tensor],
n_mels: int = N_MELS,
audio: torch.Tensor,
padding: int = 0,
device: Optional[Union[str, torch.device]] = None,
):
@ -108,7 +96,7 @@ def log_mel_spectrogram(
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
audio: torch.Tensor, shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
@ -125,21 +113,19 @@ def log_mel_spectrogram(
torch.Tensor, shape = (80, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
audio = load_audio(audio)
audio = torch.from_numpy(audio)
global MEL_FILTERS
if device is not None:
audio = audio.to(device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=False)
# Square the real and imaginary components and sum them together, similar to torch.abs() on complex tensors
magnitudes = (stft[:, :-1, :] ** 2).sum(dim=-1)
filters = mel_filters(audio.device, n_mels)
mel_spec = filters @ magnitudes
MEL_FILTERS = MEL_FILTERS.to(audio.device)
mel_spec = MEL_FILTERS @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)