mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
clean up logic, use pandas where possibl
This commit is contained in:
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
## Other Languages
|
## Other Languages
|
||||||
|
|
||||||
For non-english ASR, it is best to use the `large` whisper model. Alignment models are automatically picked by the chosen language from the default [lists](https://github.com/m-bain/whisperX/blob/e909f2f766b23b2000f2d95df41f9b844ac53e49/whisperx/transcribe.py#L22).
|
For non-english ASR, it is best to use the `large` whisper model. Alignment models are automatically picked by the chosen language from the default [lists](https://github.com/m-bain/whisperX/blob/main/whisperx/alignment.py#L18).
|
||||||
|
|
||||||
Currently support default models tested for {en, fr, de, es, it, ja, zh, nl}
|
Currently support default models tested for {en, fr, de, es, it, ja, zh, nl}
|
||||||
|
|
||||||
|
@ -11,8 +11,8 @@ from tqdm import tqdm
|
|||||||
from .audio import load_audio, log_mel_spectrogram, pad_or_trim
|
from .audio import load_audio, log_mel_spectrogram, pad_or_trim
|
||||||
from .decoding import DecodingOptions, DecodingResult, decode, detect_language
|
from .decoding import DecodingOptions, DecodingResult, decode, detect_language
|
||||||
from .model import Whisper, ModelDimensions
|
from .model import Whisper, ModelDimensions
|
||||||
from .transcribe import transcribe, load_align_model, align, transcribe_with_vad
|
from .transcribe import transcribe, transcribe_with_vad
|
||||||
|
from .alignment import load_align_model, align
|
||||||
_MODELS = {
|
_MODELS = {
|
||||||
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
|
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
|
||||||
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
|
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
|
||||||
|
@ -1,9 +1,412 @@
|
|||||||
|
""""
|
||||||
|
Forced Alignment with Whisper
|
||||||
|
C. Max Bain
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from typing import List, Union, Iterator, TYPE_CHECKING
|
||||||
|
from transformers import AutoProcessor, Wav2Vec2ForCTC
|
||||||
|
import torchaudio
|
||||||
|
import torch
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from .audio import SAMPLE_RATE, load_audio
|
||||||
|
from .utils import interpolate_nans
|
||||||
|
|
||||||
|
|
||||||
|
LANGUAGES_WITHOUT_SPACES = ["ja", "zh"]
|
||||||
|
|
||||||
|
DEFAULT_ALIGN_MODELS_TORCH = {
|
||||||
|
"en": "WAV2VEC2_ASR_BASE_960H",
|
||||||
|
"fr": "VOXPOPULI_ASR_BASE_10K_FR",
|
||||||
|
"de": "VOXPOPULI_ASR_BASE_10K_DE",
|
||||||
|
"es": "VOXPOPULI_ASR_BASE_10K_ES",
|
||||||
|
"it": "VOXPOPULI_ASR_BASE_10K_IT",
|
||||||
|
}
|
||||||
|
|
||||||
|
DEFAULT_ALIGN_MODELS_HF = {
|
||||||
|
"ja": "jonatasgrosman/wav2vec2-large-xlsr-53-japanese",
|
||||||
|
"zh": "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn",
|
||||||
|
"nl": "jonatasgrosman/wav2vec2-large-xlsr-53-dutch",
|
||||||
|
"uk": "Yehor/wav2vec2-xls-r-300m-uk-with-small-lm",
|
||||||
|
"pt": "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def load_align_model(language_code, device, model_name=None):
|
||||||
|
if model_name is None:
|
||||||
|
# use default model
|
||||||
|
if language_code in DEFAULT_ALIGN_MODELS_TORCH:
|
||||||
|
model_name = DEFAULT_ALIGN_MODELS_TORCH[language_code]
|
||||||
|
elif language_code in DEFAULT_ALIGN_MODELS_HF:
|
||||||
|
model_name = DEFAULT_ALIGN_MODELS_HF[language_code]
|
||||||
|
else:
|
||||||
|
print(f"There is no default alignment model set for this language ({language_code}).\
|
||||||
|
Please find a wav2vec2.0 model finetuned on this language in https://huggingface.co/models, then pass the model name in --align_model [MODEL_NAME]")
|
||||||
|
raise ValueError(f"No default align-model for language: {language_code}")
|
||||||
|
|
||||||
|
if model_name in torchaudio.pipelines.__all__:
|
||||||
|
pipeline_type = "torchaudio"
|
||||||
|
bundle = torchaudio.pipelines.__dict__[model_name]
|
||||||
|
align_model = bundle.get_model().to(device)
|
||||||
|
labels = bundle.get_labels()
|
||||||
|
align_dictionary = {c.lower(): i for i, c in enumerate(labels)}
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
processor = AutoProcessor.from_pretrained(model_name)
|
||||||
|
align_model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
print(f"Error loading model from huggingface, check https://huggingface.co/models for finetuned wav2vec2.0 models")
|
||||||
|
raise ValueError(f'The chosen align_model "{model_name}" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14)')
|
||||||
|
pipeline_type = "huggingface"
|
||||||
|
align_model = align_model.to(device)
|
||||||
|
labels = processor.tokenizer.get_vocab()
|
||||||
|
align_dictionary = {char.lower(): code for char,code in processor.tokenizer.get_vocab().items()}
|
||||||
|
|
||||||
|
align_metadata = {"language": language_code, "dictionary": align_dictionary, "type": pipeline_type}
|
||||||
|
|
||||||
|
return align_model, align_metadata
|
||||||
|
|
||||||
|
|
||||||
|
def align(
|
||||||
|
transcript: Iterator[dict],
|
||||||
|
model: torch.nn.Module,
|
||||||
|
align_model_metadata: dict,
|
||||||
|
audio: Union[str, np.ndarray, torch.Tensor],
|
||||||
|
device: str,
|
||||||
|
extend_duration: float = 0.0,
|
||||||
|
start_from_previous: bool = True,
|
||||||
|
interpolate_method: str = "nearest",
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Force align phoneme recognition predictions to known transcription
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
transcript: Iterator[dict]
|
||||||
|
The Whisper model instance
|
||||||
|
|
||||||
|
model: torch.nn.Module
|
||||||
|
Alignment model (wav2vec2)
|
||||||
|
|
||||||
|
audio: Union[str, np.ndarray, torch.Tensor]
|
||||||
|
The path to the audio file to open, or the audio waveform
|
||||||
|
|
||||||
|
device: str
|
||||||
|
cuda device
|
||||||
|
|
||||||
|
diarization: pd.DataFrame {'start': List[float], 'end': List[float], 'speaker': List[float]}
|
||||||
|
diarization segments with speaker labels.
|
||||||
|
|
||||||
|
extend_duration: float
|
||||||
|
Amount to pad input segments by. If not using vad--filter then recommended to use 2 seconds
|
||||||
|
|
||||||
|
If the gzip compression ratio is above this value, treat as failed
|
||||||
|
|
||||||
|
interpolate_method: str ["nearest", "linear", "ignore"]
|
||||||
|
Method to assign timestamps to non-aligned words. Words are not able to be aligned when none of the characters occur in the align model dictionary.
|
||||||
|
"nearest" copies timestamp of nearest word within the segment. "linear" is linear interpolation. "drop" removes that word from output.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
||||||
|
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
||||||
|
"""
|
||||||
|
if not torch.is_tensor(audio):
|
||||||
|
if isinstance(audio, str):
|
||||||
|
audio = load_audio(audio)
|
||||||
|
audio = torch.from_numpy(audio)
|
||||||
|
if len(audio.shape) == 1:
|
||||||
|
audio = audio.unsqueeze(0)
|
||||||
|
|
||||||
|
MAX_DURATION = audio.shape[1] / SAMPLE_RATE
|
||||||
|
|
||||||
|
model_dictionary = align_model_metadata["dictionary"]
|
||||||
|
model_lang = align_model_metadata["language"]
|
||||||
|
model_type = align_model_metadata["type"]
|
||||||
|
|
||||||
|
aligned_segments = []
|
||||||
|
|
||||||
|
prev_t2 = 0
|
||||||
|
|
||||||
|
char_segments_arr = {
|
||||||
|
"segment-idx": [],
|
||||||
|
"subsegment-idx": [],
|
||||||
|
"word-idx": [],
|
||||||
|
"char": [],
|
||||||
|
"start": [],
|
||||||
|
"end": [],
|
||||||
|
"score": [],
|
||||||
|
}
|
||||||
|
|
||||||
|
for sdx, segment in enumerate(transcript):
|
||||||
|
while True:
|
||||||
|
segment_align_success = False
|
||||||
|
|
||||||
|
# strip spaces at beginning / end, but keep track of the amount.
|
||||||
|
num_leading = len(segment["text"]) - len(segment["text"].lstrip())
|
||||||
|
num_trailing = len(segment["text"]) - len(segment["text"].rstrip())
|
||||||
|
transcription = segment["text"]
|
||||||
|
|
||||||
|
# TODO: convert number tokenizer / symbols to phonetic words for alignment.
|
||||||
|
# e.g. "$300" -> "three hundred dollars"
|
||||||
|
# currently "$300" is ignored since no characters present in the phonetic dictionary
|
||||||
|
|
||||||
|
# split into words
|
||||||
|
if model_lang not in LANGUAGES_WITHOUT_SPACES:
|
||||||
|
per_word = transcription.split(" ")
|
||||||
|
else:
|
||||||
|
per_word = transcription
|
||||||
|
|
||||||
|
# first check that characters in transcription can be aligned (they are contained in align model"s dictionary)
|
||||||
|
clean_char, clean_cdx = [], []
|
||||||
|
for cdx, char in enumerate(transcription):
|
||||||
|
char_ = char.lower()
|
||||||
|
# wav2vec2 models use "|" character to represent spaces
|
||||||
|
if model_lang not in LANGUAGES_WITHOUT_SPACES:
|
||||||
|
char_ = char_.replace(" ", "|")
|
||||||
|
|
||||||
|
# ignore whitespace at beginning and end of transcript
|
||||||
|
if cdx < num_leading:
|
||||||
|
pass
|
||||||
|
elif cdx > len(transcription) - num_trailing - 1:
|
||||||
|
pass
|
||||||
|
elif char_ in model_dictionary.keys():
|
||||||
|
clean_char.append(char_)
|
||||||
|
clean_cdx.append(cdx)
|
||||||
|
|
||||||
|
clean_wdx = []
|
||||||
|
for wdx, wrd in enumerate(per_word):
|
||||||
|
if any([c in model_dictionary.keys() for c in wrd]):
|
||||||
|
clean_wdx.append(wdx)
|
||||||
|
|
||||||
|
# if no characters are in the dictionary, then we skip this segment...
|
||||||
|
if len(clean_char) == 0:
|
||||||
|
print("Failed to align segment: no characters in this segment found in model dictionary, resorting to original...")
|
||||||
|
break
|
||||||
|
|
||||||
|
transcription_cleaned = "".join(clean_char)
|
||||||
|
tokens = [model_dictionary[c] for c in transcription_cleaned]
|
||||||
|
|
||||||
|
# pad according original timestamps
|
||||||
|
t1 = max(segment["start"] - extend_duration, 0)
|
||||||
|
t2 = min(segment["end"] + extend_duration, MAX_DURATION)
|
||||||
|
|
||||||
|
# use prev_t2 as current t1 if it"s later
|
||||||
|
if start_from_previous and t1 < prev_t2:
|
||||||
|
t1 = prev_t2
|
||||||
|
|
||||||
|
# check if timestamp range is still valid
|
||||||
|
if t1 >= MAX_DURATION:
|
||||||
|
print("Failed to align segment: original start time longer than audio duration, skipping...")
|
||||||
|
break
|
||||||
|
if t2 - t1 < 0.02:
|
||||||
|
print("Failed to align segment: duration smaller than 0.02s time precision")
|
||||||
|
break
|
||||||
|
|
||||||
|
f1 = int(t1 * SAMPLE_RATE)
|
||||||
|
f2 = int(t2 * SAMPLE_RATE)
|
||||||
|
|
||||||
|
waveform_segment = audio[:, f1:f2]
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
if model_type == "torchaudio":
|
||||||
|
emissions, _ = model(waveform_segment.to(device))
|
||||||
|
elif model_type == "huggingface":
|
||||||
|
emissions = model(waveform_segment.to(device)).logits
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f"Align model of type {model_type} not supported.")
|
||||||
|
emissions = torch.log_softmax(emissions, dim=-1)
|
||||||
|
|
||||||
|
emission = emissions[0].cpu().detach()
|
||||||
|
|
||||||
|
trellis = get_trellis(emission, tokens)
|
||||||
|
path = backtrack(trellis, emission, tokens)
|
||||||
|
if path is None:
|
||||||
|
print("Failed to align segment: backtrack failed, resorting to original...")
|
||||||
|
break
|
||||||
|
char_segments = merge_repeats(path, transcription_cleaned)
|
||||||
|
# word_segments = merge_words(char_segments)
|
||||||
|
|
||||||
|
|
||||||
|
# sub-segments
|
||||||
|
if "seg-text" not in segment:
|
||||||
|
segment["seg-text"] = [transcription]
|
||||||
|
|
||||||
|
v = 0
|
||||||
|
seg_lens = [0] + [len(x) for x in segment["seg-text"]]
|
||||||
|
seg_lens_cumsum = [v := v + n for n in seg_lens]
|
||||||
|
sub_seg_idx = 0
|
||||||
|
|
||||||
|
wdx = 0
|
||||||
|
duration = t2 - t1
|
||||||
|
ratio = duration * waveform_segment.size(0) / (trellis.size(0) - 1)
|
||||||
|
for cdx, char in enumerate(transcription + " "):
|
||||||
|
is_last = False
|
||||||
|
if cdx == len(transcription):
|
||||||
|
break
|
||||||
|
elif cdx+1 == len(transcription):
|
||||||
|
is_last = True
|
||||||
|
|
||||||
|
|
||||||
|
start, end, score = None, None, None
|
||||||
|
if cdx in clean_cdx:
|
||||||
|
char_seg = char_segments[clean_cdx.index(cdx)]
|
||||||
|
start = char_seg.start * ratio + t1
|
||||||
|
end = char_seg.end * ratio + t1
|
||||||
|
score = char_seg.score
|
||||||
|
|
||||||
|
char_segments_arr["char"].append(char)
|
||||||
|
char_segments_arr["start"].append(start)
|
||||||
|
char_segments_arr["end"].append(end)
|
||||||
|
char_segments_arr["score"].append(score)
|
||||||
|
char_segments_arr["word-idx"].append(wdx)
|
||||||
|
char_segments_arr["segment-idx"].append(sdx)
|
||||||
|
char_segments_arr["subsegment-idx"].append(sub_seg_idx)
|
||||||
|
|
||||||
|
# word-level info
|
||||||
|
if model_lang in LANGUAGES_WITHOUT_SPACES:
|
||||||
|
# character == word
|
||||||
|
wdx += 1
|
||||||
|
elif is_last or transcription[cdx+1] == " " or cdx == seg_lens_cumsum[sub_seg_idx+1] - 1:
|
||||||
|
wdx += 1
|
||||||
|
|
||||||
|
if is_last or cdx == seg_lens_cumsum[sub_seg_idx+1] - 1:
|
||||||
|
wdx = 0
|
||||||
|
sub_seg_idx += 1
|
||||||
|
|
||||||
|
prev_t2 = segment["end"]
|
||||||
|
|
||||||
|
segment_align_success = True
|
||||||
|
# end while True loop
|
||||||
|
break
|
||||||
|
|
||||||
|
# reset prev_t2 due to drifting issues
|
||||||
|
if not segment_align_success:
|
||||||
|
prev_t2 = 0
|
||||||
|
|
||||||
|
char_segments_arr = pd.DataFrame(char_segments_arr)
|
||||||
|
not_space = char_segments_arr["char"] != " "
|
||||||
|
|
||||||
|
per_seg_grp = char_segments_arr.groupby(["segment-idx", "subsegment-idx"], as_index = False)
|
||||||
|
char_segments_arr = per_seg_grp.apply(lambda x: x.reset_index(drop = True)).reset_index()
|
||||||
|
per_word_grp = char_segments_arr[not_space].groupby(["segment-idx", "subsegment-idx", "word-idx"])
|
||||||
|
per_subseg_grp = char_segments_arr[not_space].groupby(["segment-idx", "subsegment-idx"])
|
||||||
|
per_seg_grp = char_segments_arr[not_space].groupby(["segment-idx"])
|
||||||
|
|
||||||
|
word_segments_arr = {}
|
||||||
|
|
||||||
|
# start of word is first char with a timestamp
|
||||||
|
word_segments_arr["start"] = per_word_grp["start"].min().reset_index()["start"]
|
||||||
|
# end of word is last char with a timestamp
|
||||||
|
word_segments_arr["end"] = per_word_grp["end"].max().reset_index()["end"]
|
||||||
|
# score of word is mean (excluding nan)
|
||||||
|
word_segments_arr["score"] = per_word_grp["score"].mean().reset_index()["score"]
|
||||||
|
|
||||||
|
|
||||||
|
word_segments_arr["segment-text-start"] = per_word_grp["level_1"].min().reset_index()["level_1"]
|
||||||
|
word_segments_arr["segment-text-end"] = per_word_grp["level_1"].max().reset_index()["level_1"] + 1
|
||||||
|
word_segments_arr["segment-idx"] = per_word_grp["level_1"].min().reset_index()["segment-idx"]
|
||||||
|
|
||||||
|
word_segments_arr = pd.DataFrame(word_segments_arr)
|
||||||
|
word_segments_arr[["segment-idx", "subsegment-idx", "word-idx"]] = per_word_grp["level_1"].min().reset_index()[["segment-idx", "subsegment-idx", "word-idx"]]
|
||||||
|
|
||||||
|
segments_arr = {}
|
||||||
|
segments_arr["start"] = per_subseg_grp["start"].min().reset_index()["start"]
|
||||||
|
segments_arr["end"] = per_subseg_grp["end"].min().reset_index()["end"]
|
||||||
|
segments_arr = pd.DataFrame(segments_arr)
|
||||||
|
segments_arr[["segment-idx", "subsegment-idx-start"]] = per_subseg_grp["start"].min().reset_index()[["segment-idx", "subsegment-idx"]]
|
||||||
|
segments_arr["subsegment-idx-end"] = segments_arr["subsegment-idx-start"] + 1
|
||||||
|
|
||||||
|
# interpolate missing words / sub-segments
|
||||||
|
if interpolate_method != "ignore":
|
||||||
|
wrd_subseg_grp = word_segments_arr.groupby(["segment-idx", "subsegment-idx"])
|
||||||
|
wrd_seg_grp = word_segments_arr.groupby(["segment-idx"])
|
||||||
|
# we still know which word timestamps are interpolated because their score == nan
|
||||||
|
word_segments_arr["start"] = wrd_subseg_grp['start'].apply(lambda group: interpolate_nans(group, method=interpolate_method))
|
||||||
|
word_segments_arr["end"] = wrd_subseg_grp['end'].apply(lambda group: interpolate_nans(group, method=interpolate_method))
|
||||||
|
|
||||||
|
word_segments_arr["start"] = wrd_seg_grp['start'].apply(lambda group: interpolate_nans(group, method=interpolate_method))
|
||||||
|
word_segments_arr["end"] = wrd_seg_grp['end'].apply(lambda group: interpolate_nans(group, method=interpolate_method))
|
||||||
|
|
||||||
|
sub_seg_grp = segments_arr.groupby(["segment-idx"])
|
||||||
|
segments_arr['start'] = sub_seg_grp['start'].apply(lambda group: interpolate_nans(group, method=interpolate_method))
|
||||||
|
segments_arr['end'] = sub_seg_grp['end'].apply(lambda group: interpolate_nans(group, method=interpolate_method))
|
||||||
|
# merge subsegments which are missing times
|
||||||
|
# group by sub seg and time.
|
||||||
|
seg_grp_dup = segments_arr.groupby(["segment-idx", "start", "end"])
|
||||||
|
segments_arr["subsegment-idx-start"] = seg_grp_dup["subsegment-idx-start"].transform(min)
|
||||||
|
segments_arr["subsegment-idx-end"] = seg_grp_dup["subsegment-idx-end"].transform(max)
|
||||||
|
segments_arr.drop_duplicates(subset=["segment-idx", "subsegment-idx-start", "subsegment-idx-end"], inplace=True)
|
||||||
|
else:
|
||||||
|
word_segments_arr.dropna(inplace=True)
|
||||||
|
segments_arr.dropna(inplace=True)
|
||||||
|
|
||||||
|
aligned_segments = []
|
||||||
|
aligned_segments_word = []
|
||||||
|
|
||||||
|
word_segments_arr.set_index(["segment-idx", "subsegment-idx"], inplace=True)
|
||||||
|
char_segments_arr.set_index(["segment-idx", "subsegment-idx", "word-idx"], inplace=True)
|
||||||
|
|
||||||
|
for sdx, srow in segments_arr.iterrows():
|
||||||
|
|
||||||
|
seg_idx = int(srow["segment-idx"])
|
||||||
|
sub_start = int(srow["subsegment-idx-start"])
|
||||||
|
sub_end = int(srow["subsegment-idx-end"])
|
||||||
|
|
||||||
|
seg = transcript[seg_idx]
|
||||||
|
text = "".join(seg["seg-text"][sub_start:sub_end])
|
||||||
|
|
||||||
|
wseg = word_segments_arr.loc[seg_idx].loc[sub_start:sub_end-1]
|
||||||
|
cseg = char_segments_arr.loc[seg_idx].loc[sub_start:sub_end-1]
|
||||||
|
cseg['segment-text-start'] = cseg['level_1']
|
||||||
|
cseg['segment-text-end'] = cseg['level_1'] + 1
|
||||||
|
del cseg['level_1']
|
||||||
|
del cseg['level_0']
|
||||||
|
cseg.reset_index(inplace=True)
|
||||||
|
aligned_segments.append(
|
||||||
|
{
|
||||||
|
"start": srow["start"],
|
||||||
|
"end": srow["end"],
|
||||||
|
"text": text,
|
||||||
|
"word-segments": wseg,
|
||||||
|
"char-segments": cseg
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_raw_text(word_row):
|
||||||
|
return seg["seg-text"][word_row.name][int(word_row["segment-text-start"]):int(word_row["segment-text-end"])+1]
|
||||||
|
|
||||||
|
wdx = 0
|
||||||
|
curr_text = get_raw_text(wseg.iloc[wdx])
|
||||||
|
if len(wseg) > 1:
|
||||||
|
for _, wrow in wseg.iloc[1:].iterrows():
|
||||||
|
if wrow['start'] != wseg.iloc[wdx]['start']:
|
||||||
|
aligned_segments_word.append(
|
||||||
|
{
|
||||||
|
"text": curr_text.strip(),
|
||||||
|
"start": wseg.iloc[wdx]["start"],
|
||||||
|
"end": wseg.iloc[wdx]["end"],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
curr_text = ""
|
||||||
|
curr_text += " " + get_raw_text(wrow)
|
||||||
|
wdx += 1
|
||||||
|
aligned_segments_word.append(
|
||||||
|
{
|
||||||
|
"text": curr_text.strip(),
|
||||||
|
"start": wseg.iloc[wdx]["start"],
|
||||||
|
"end": wseg.iloc[wdx]["end"]
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
return {"segments": aligned_segments, "word_segments": aligned_segments_word}
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
source: https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html
|
source: https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html
|
||||||
"""
|
"""
|
||||||
import torch
|
|
||||||
from dataclasses import dataclass
|
|
||||||
|
|
||||||
def get_trellis(emission, tokens, blank_id=0):
|
def get_trellis(emission, tokens, blank_id=0):
|
||||||
num_frame = emission.size(0)
|
num_frame = emission.size(0)
|
||||||
num_tokens = len(tokens)
|
num_tokens = len(tokens)
|
||||||
|
@ -5,12 +5,11 @@ from typing import List, Optional, Tuple, Union, Iterator, TYPE_CHECKING
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
|
||||||
from transformers import AutoProcessor, Wav2Vec2ForCTC
|
|
||||||
import tqdm
|
import tqdm
|
||||||
from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, CHUNK_LENGTH, pad_or_trim, log_mel_spectrogram, load_audio
|
from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, CHUNK_LENGTH, pad_or_trim, log_mel_spectrogram, load_audio
|
||||||
from .alignment import get_trellis, backtrack, merge_repeats, merge_words
|
from .alignment import load_align_model, align, get_trellis, backtrack, merge_repeats, merge_words
|
||||||
from .decoding import DecodingOptions, DecodingResult
|
from .decoding import DecodingOptions, DecodingResult
|
||||||
|
from .diarize import assign_word_speakers, Segment
|
||||||
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
|
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
|
||||||
from .utils import exact_div, format_timestamp, optional_int, optional_float, str2bool, interpolate_nans, write_txt, write_vtt, write_srt, write_ass, write_tsv
|
from .utils import exact_div, format_timestamp, optional_int, optional_float, str2bool, interpolate_nans, write_txt, write_vtt, write_srt, write_ass, write_tsv
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -18,23 +17,6 @@ import pandas as pd
|
|||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from .model import Whisper
|
from .model import Whisper
|
||||||
|
|
||||||
LANGUAGES_WITHOUT_SPACES = ["ja", "zh"]
|
|
||||||
|
|
||||||
DEFAULT_ALIGN_MODELS_TORCH = {
|
|
||||||
"en": "WAV2VEC2_ASR_BASE_960H",
|
|
||||||
"fr": "VOXPOPULI_ASR_BASE_10K_FR",
|
|
||||||
"de": "VOXPOPULI_ASR_BASE_10K_DE",
|
|
||||||
"es": "VOXPOPULI_ASR_BASE_10K_ES",
|
|
||||||
"it": "VOXPOPULI_ASR_BASE_10K_IT",
|
|
||||||
}
|
|
||||||
|
|
||||||
DEFAULT_ALIGN_MODELS_HF = {
|
|
||||||
"ja": "jonatasgrosman/wav2vec2-large-xlsr-53-japanese",
|
|
||||||
"zh": "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn",
|
|
||||||
"nl": "jonatasgrosman/wav2vec2-large-xlsr-53-dutch",
|
|
||||||
"uk": "Yehor/wav2vec2-xls-r-300m-uk-with-small-lm",
|
|
||||||
"pt": "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese",
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def transcribe(
|
def transcribe(
|
||||||
@ -273,355 +255,11 @@ def transcribe(
|
|||||||
return dict(text=tokenizer.decode(all_tokens[len(initial_prompt):]), segments=all_segments, language=language)
|
return dict(text=tokenizer.decode(all_tokens[len(initial_prompt):]), segments=all_segments, language=language)
|
||||||
|
|
||||||
|
|
||||||
def align(
|
|
||||||
transcript: Iterator[dict],
|
|
||||||
model: torch.nn.Module,
|
|
||||||
align_model_metadata: dict,
|
|
||||||
audio: Union[str, np.ndarray, torch.Tensor],
|
|
||||||
device: str,
|
|
||||||
extend_duration: float = 0.0,
|
|
||||||
start_from_previous: bool = True,
|
|
||||||
interpolate_method: str = "nearest",
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Force align phoneme recognition predictions to known transcription
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
transcript: Iterator[dict]
|
|
||||||
The Whisper model instance
|
|
||||||
|
|
||||||
model: torch.nn.Module
|
|
||||||
Alignment model (wav2vec2)
|
|
||||||
|
|
||||||
audio: Union[str, np.ndarray, torch.Tensor]
|
|
||||||
The path to the audio file to open, or the audio waveform
|
|
||||||
|
|
||||||
device: str
|
|
||||||
cuda device
|
|
||||||
|
|
||||||
extend_duration: float
|
|
||||||
Amount to pad input segments by. If not using vad--filter then recommended to use 2 seconds
|
|
||||||
|
|
||||||
If the gzip compression ratio is above this value, treat as failed
|
|
||||||
|
|
||||||
interpolate_method: str ["nearest", "linear", "ignore"]
|
|
||||||
Method to assign timestamps to non-aligned words. Words are not able to be aligned when none of the characters occur in the align model dictionary.
|
|
||||||
"nearest" copies timestamp of nearest word within the segment. "linear" is linear interpolation. "drop" removes that word from output.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
|
||||||
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
|
||||||
"""
|
|
||||||
if not torch.is_tensor(audio):
|
|
||||||
if isinstance(audio, str):
|
|
||||||
audio = load_audio(audio)
|
|
||||||
audio = torch.from_numpy(audio)
|
|
||||||
if len(audio.shape) == 1:
|
|
||||||
audio = audio.unsqueeze(0)
|
|
||||||
|
|
||||||
MAX_DURATION = audio.shape[1] / SAMPLE_RATE
|
|
||||||
|
|
||||||
model_dictionary = align_model_metadata["dictionary"]
|
|
||||||
model_lang = align_model_metadata["language"]
|
|
||||||
model_type = align_model_metadata["type"]
|
|
||||||
|
|
||||||
aligned_segments = []
|
|
||||||
|
|
||||||
prev_t2 = 0
|
|
||||||
for segment in transcript:
|
|
||||||
aligned_subsegments = []
|
|
||||||
while True:
|
|
||||||
segment_align_success = False
|
|
||||||
|
|
||||||
# strip spaces at beginning / end, but keep track of the amount.
|
|
||||||
num_leading = len(segment["text"]) - len(segment["text"].lstrip())
|
|
||||||
num_trailing = len(segment["text"]) - len(segment["text"].rstrip())
|
|
||||||
transcription = segment["text"]
|
|
||||||
|
|
||||||
# TODO: convert number tokenizer / symbols to phonetic words for alignment.
|
|
||||||
# e.g. "$300" -> "three hundred dollars"
|
|
||||||
# currently "$300" is ignored since no characters present in the phonetic dictionary
|
|
||||||
|
|
||||||
# split into words
|
|
||||||
if model_lang not in LANGUAGES_WITHOUT_SPACES:
|
|
||||||
per_word = transcription.split(" ")
|
|
||||||
else:
|
|
||||||
per_word = transcription
|
|
||||||
|
|
||||||
# first check that characters in transcription can be aligned (they are contained in align model"s dictionary)
|
|
||||||
clean_char, clean_cdx = [], []
|
|
||||||
for cdx, char in enumerate(transcription):
|
|
||||||
char_ = char.lower()
|
|
||||||
# wav2vec2 models use "|" character to represent spaces
|
|
||||||
if model_lang not in LANGUAGES_WITHOUT_SPACES:
|
|
||||||
char_ = char_.replace(" ", "|")
|
|
||||||
|
|
||||||
# ignore whitespace at beginning and end of transcript
|
|
||||||
if cdx < num_leading:
|
|
||||||
pass
|
|
||||||
elif cdx > len(transcription) - num_trailing - 1:
|
|
||||||
pass
|
|
||||||
elif char_ in model_dictionary.keys():
|
|
||||||
clean_char.append(char_)
|
|
||||||
clean_cdx.append(cdx)
|
|
||||||
|
|
||||||
clean_wdx = []
|
|
||||||
for wdx, wrd in enumerate(per_word):
|
|
||||||
if any([c in model_dictionary.keys() for c in wrd]):
|
|
||||||
clean_wdx.append(wdx)
|
|
||||||
|
|
||||||
# if no characters are in the dictionary, then we skip this segment...
|
|
||||||
if len(clean_char) == 0:
|
|
||||||
print("Failed to align segment: no characters in this segment found in model dictionary, resorting to original...")
|
|
||||||
break
|
|
||||||
|
|
||||||
transcription_cleaned = "".join(clean_char)
|
|
||||||
tokens = [model_dictionary[c] for c in transcription_cleaned]
|
|
||||||
|
|
||||||
# pad according original timestamps
|
|
||||||
t1 = max(segment["start"] - extend_duration, 0)
|
|
||||||
t2 = min(segment["end"] + extend_duration, MAX_DURATION)
|
|
||||||
|
|
||||||
# use prev_t2 as current t1 if it"s later
|
|
||||||
if start_from_previous and t1 < prev_t2:
|
|
||||||
t1 = prev_t2
|
|
||||||
|
|
||||||
# check if timestamp range is still valid
|
|
||||||
if t1 >= MAX_DURATION:
|
|
||||||
print("Failed to align segment: original start time longer than audio duration, skipping...")
|
|
||||||
break
|
|
||||||
if t2 - t1 < 0.02:
|
|
||||||
print("Failed to align segment: duration smaller than 0.02s time precision")
|
|
||||||
break
|
|
||||||
|
|
||||||
f1 = int(t1 * SAMPLE_RATE)
|
|
||||||
f2 = int(t2 * SAMPLE_RATE)
|
|
||||||
|
|
||||||
waveform_segment = audio[:, f1:f2]
|
|
||||||
|
|
||||||
with torch.inference_mode():
|
|
||||||
if model_type == "torchaudio":
|
|
||||||
emissions, _ = model(waveform_segment.to(device))
|
|
||||||
elif model_type == "huggingface":
|
|
||||||
emissions = model(waveform_segment.to(device)).logits
|
|
||||||
else:
|
|
||||||
raise NotImplementedError(f"Align model of type {model_type} not supported.")
|
|
||||||
emissions = torch.log_softmax(emissions, dim=-1)
|
|
||||||
|
|
||||||
emission = emissions[0].cpu().detach()
|
|
||||||
|
|
||||||
trellis = get_trellis(emission, tokens)
|
|
||||||
path = backtrack(trellis, emission, tokens)
|
|
||||||
if path is None:
|
|
||||||
print("Failed to align segment: backtrack failed, resorting to original...")
|
|
||||||
break
|
|
||||||
char_segments = merge_repeats(path, transcription_cleaned)
|
|
||||||
# word_segments = merge_words(char_segments)
|
|
||||||
|
|
||||||
|
|
||||||
# sub-segments
|
|
||||||
if "seg-text" not in segment:
|
|
||||||
segment["seg-text"] = [transcription]
|
|
||||||
|
|
||||||
v = 0
|
|
||||||
seg_lens = [0] + [len(x) for x in segment["seg-text"]]
|
|
||||||
seg_lens_cumsum = [v := v + n for n in seg_lens]
|
|
||||||
sub_seg_idx = 0
|
|
||||||
|
|
||||||
char_level = {
|
|
||||||
"start": [],
|
|
||||||
"end": [],
|
|
||||||
"score": [],
|
|
||||||
"word-index": [],
|
|
||||||
}
|
|
||||||
|
|
||||||
word_level = {
|
|
||||||
"start": [],
|
|
||||||
"end": [],
|
|
||||||
"score": [],
|
|
||||||
"segment-text-start": [],
|
|
||||||
"segment-text-end": []
|
|
||||||
}
|
|
||||||
|
|
||||||
wdx = 0
|
|
||||||
seg_start_actual, seg_end_actual = None, None
|
|
||||||
duration = t2 - t1
|
|
||||||
ratio = duration * waveform_segment.size(0) / (trellis.size(0) - 1)
|
|
||||||
cdx_prev = 0
|
|
||||||
for cdx, char in enumerate(transcription + " "):
|
|
||||||
is_last = False
|
|
||||||
if cdx == len(transcription):
|
|
||||||
break
|
|
||||||
elif cdx+1 == len(transcription):
|
|
||||||
is_last = True
|
|
||||||
|
|
||||||
|
|
||||||
start, end, score = None, None, None
|
|
||||||
if cdx in clean_cdx:
|
|
||||||
char_seg = char_segments[clean_cdx.index(cdx)]
|
|
||||||
start = char_seg.start * ratio + t1
|
|
||||||
end = char_seg.end * ratio + t1
|
|
||||||
score = char_seg.score
|
|
||||||
|
|
||||||
char_level["start"].append(start)
|
|
||||||
char_level["end"].append(end)
|
|
||||||
char_level["score"].append(score)
|
|
||||||
char_level["word-index"].append(wdx)
|
|
||||||
|
|
||||||
# word-level info
|
|
||||||
if model_lang in LANGUAGES_WITHOUT_SPACES:
|
|
||||||
# character == word
|
|
||||||
wdx += 1
|
|
||||||
elif is_last or transcription[cdx+1] == " " or cdx == seg_lens_cumsum[sub_seg_idx+1] - 1:
|
|
||||||
wdx += 1
|
|
||||||
word_level["start"].append(None)
|
|
||||||
word_level["end"].append(None)
|
|
||||||
word_level["score"].append(None)
|
|
||||||
word_level["segment-text-start"].append(cdx_prev-seg_lens_cumsum[sub_seg_idx])
|
|
||||||
word_level["segment-text-end"].append(cdx+1-seg_lens_cumsum[sub_seg_idx])
|
|
||||||
cdx_prev = cdx+2
|
|
||||||
|
|
||||||
if is_last or cdx == seg_lens_cumsum[sub_seg_idx+1] - 1:
|
|
||||||
if model_lang not in LANGUAGES_WITHOUT_SPACES:
|
|
||||||
char_level = pd.DataFrame(char_level)
|
|
||||||
word_level = pd.DataFrame(word_level)
|
|
||||||
|
|
||||||
not_space = pd.Series(list(segment["seg-text"][sub_seg_idx])) != " "
|
|
||||||
word_level["start"] = char_level[not_space].groupby("word-index")["start"].min() # take min of all chars in a word ignoring space
|
|
||||||
word_level["end"] = char_level[not_space].groupby("word-index")["end"].max() # take max of all chars in a word
|
|
||||||
|
|
||||||
# fill missing
|
|
||||||
if interpolate_method != "ignore":
|
|
||||||
word_level["start"] = interpolate_nans(word_level["start"], method=interpolate_method)
|
|
||||||
word_level["end"] = interpolate_nans(word_level["end"], method=interpolate_method)
|
|
||||||
word_level["start"] = word_level["start"].values.tolist()
|
|
||||||
word_level["end"] = word_level["end"].values.tolist()
|
|
||||||
word_level["score"] = char_level.groupby("word-index")["score"].mean() # take mean of all scores
|
|
||||||
|
|
||||||
char_level = char_level.replace({np.nan:None}).to_dict("list")
|
|
||||||
word_level = pd.DataFrame(word_level).replace({np.nan:None}).to_dict("list")
|
|
||||||
else:
|
|
||||||
word_level = None
|
|
||||||
|
|
||||||
aligned_subsegments.append(
|
|
||||||
{
|
|
||||||
"text": segment["seg-text"][sub_seg_idx],
|
|
||||||
"start": seg_start_actual,
|
|
||||||
"end": seg_end_actual,
|
|
||||||
"char-segments": char_level,
|
|
||||||
"word-segments": word_level
|
|
||||||
}
|
|
||||||
)
|
|
||||||
if "language" in segment:
|
|
||||||
aligned_subsegments[-1]["language"] = segment["language"]
|
|
||||||
|
|
||||||
char_level = {
|
|
||||||
"start": [],
|
|
||||||
"end": [],
|
|
||||||
"score": [],
|
|
||||||
"word-index": [],
|
|
||||||
}
|
|
||||||
word_level = {
|
|
||||||
"start": [],
|
|
||||||
"end": [],
|
|
||||||
"score": [],
|
|
||||||
"segment-text-start": [],
|
|
||||||
"segment-text-end": []
|
|
||||||
}
|
|
||||||
wdx = 0
|
|
||||||
cdx_prev = cdx + 2
|
|
||||||
sub_seg_idx += 1
|
|
||||||
seg_start_actual, seg_end_actual = None, None
|
|
||||||
|
|
||||||
|
|
||||||
# take min-max for actual segment-level timestamp
|
|
||||||
if seg_start_actual is None and start is not None:
|
|
||||||
seg_start_actual = start
|
|
||||||
if end is not None:
|
|
||||||
seg_end_actual = end
|
|
||||||
|
|
||||||
|
|
||||||
prev_t2 = segment["end"]
|
|
||||||
|
|
||||||
segment_align_success = True
|
|
||||||
# end while True loop
|
|
||||||
break
|
|
||||||
|
|
||||||
# reset prev_t2 due to drifting issues
|
|
||||||
if not segment_align_success:
|
|
||||||
prev_t2 = 0
|
|
||||||
|
|
||||||
start = interpolate_nans(pd.DataFrame(aligned_subsegments)["start"], method=interpolate_method)
|
|
||||||
end = interpolate_nans(pd.DataFrame(aligned_subsegments)["end"], method=interpolate_method)
|
|
||||||
for idx, seg in enumerate(aligned_subsegments):
|
|
||||||
seg['start'] = start.iloc[idx]
|
|
||||||
seg['end'] = end.iloc[idx]
|
|
||||||
|
|
||||||
aligned_segments += aligned_subsegments
|
|
||||||
|
|
||||||
# create word level segments for .srt
|
|
||||||
word_seg = []
|
|
||||||
for seg in aligned_segments:
|
|
||||||
if model_lang in LANGUAGES_WITHOUT_SPACES:
|
|
||||||
# character based
|
|
||||||
seg["word-segments"] = seg["char-segments"]
|
|
||||||
seg["word-segments"]["segment-text-start"] = range(len(seg['word-segments']['start']))
|
|
||||||
seg["word-segments"]["segment-text-end"] = range(1, len(seg['word-segments']['start'])+1)
|
|
||||||
|
|
||||||
wseg = pd.DataFrame(seg["word-segments"]).replace({np.nan:None})
|
|
||||||
for wdx, wrow in wseg.iterrows():
|
|
||||||
if wrow["start"] is not None:
|
|
||||||
word_seg.append(
|
|
||||||
{
|
|
||||||
"start": wrow["start"],
|
|
||||||
"end": wrow["end"],
|
|
||||||
"text": seg["text"][int(wrow["segment-text-start"]):int(wrow["segment-text-end"])]
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
return {"segments": aligned_segments, "word_segments": word_seg}
|
|
||||||
|
|
||||||
def load_align_model(language_code, device, model_name=None):
|
|
||||||
if model_name is None:
|
|
||||||
# use default model
|
|
||||||
if language_code in DEFAULT_ALIGN_MODELS_TORCH:
|
|
||||||
model_name = DEFAULT_ALIGN_MODELS_TORCH[language_code]
|
|
||||||
elif language_code in DEFAULT_ALIGN_MODELS_HF:
|
|
||||||
model_name = DEFAULT_ALIGN_MODELS_HF[language_code]
|
|
||||||
else:
|
|
||||||
print(f"There is no default alignment model set for this language ({language_code}).\
|
|
||||||
Please find a wav2vec2.0 model finetuned on this language in https://huggingface.co/models, then pass the model name in --align_model [MODEL_NAME]")
|
|
||||||
raise ValueError(f"No default align-model for language: {language_code}")
|
|
||||||
|
|
||||||
if model_name in torchaudio.pipelines.__all__:
|
|
||||||
pipeline_type = "torchaudio"
|
|
||||||
bundle = torchaudio.pipelines.__dict__[model_name]
|
|
||||||
align_model = bundle.get_model().to(device)
|
|
||||||
labels = bundle.get_labels()
|
|
||||||
align_dictionary = {c.lower(): i for i, c in enumerate(labels)}
|
|
||||||
else:
|
|
||||||
try:
|
|
||||||
processor = AutoProcessor.from_pretrained(model_name)
|
|
||||||
align_model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
print(f"Error loading model from huggingface, check https://huggingface.co/models for finetuned wav2vec2.0 models")
|
|
||||||
raise ValueError(f'The chosen align_model "{model_name}" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14)')
|
|
||||||
pipeline_type = "huggingface"
|
|
||||||
align_model = align_model.to(device)
|
|
||||||
labels = processor.tokenizer.get_vocab()
|
|
||||||
align_dictionary = {char.lower(): code for char,code in processor.tokenizer.get_vocab().items()}
|
|
||||||
|
|
||||||
align_metadata = {"language": language_code, "dictionary": align_dictionary, "type": pipeline_type}
|
|
||||||
|
|
||||||
return align_model, align_metadata
|
|
||||||
|
|
||||||
|
|
||||||
def merge_chunks(segments, chunk_size=CHUNK_LENGTH):
|
def merge_chunks(segments, chunk_size=CHUNK_LENGTH):
|
||||||
"""
|
"""
|
||||||
Merge VAD segments into larger segments of size ~CHUNK_LENGTH.
|
Merge VAD segments into larger segments of approximately size ~CHUNK_LENGTH.
|
||||||
|
TODO: Make sure VAD segment isn't too long, otherwise it will cause OOM when input to alignment model
|
||||||
|
TODO: Or sliding window alignment model over long segment.
|
||||||
"""
|
"""
|
||||||
curr_start = 0
|
curr_start = 0
|
||||||
curr_end = 0
|
curr_end = 0
|
||||||
@ -702,58 +340,6 @@ def transcribe_with_vad(
|
|||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
def assign_word_speakers(diarize_df, result_segments, fill_nearest=False):
|
|
||||||
|
|
||||||
for seg in result_segments:
|
|
||||||
wdf = pd.DataFrame(seg['word-segments'])
|
|
||||||
if len(wdf['start'].dropna()) == 0:
|
|
||||||
wdf['start'] = seg['start']
|
|
||||||
wdf['end'] = seg['end']
|
|
||||||
speakers = []
|
|
||||||
for wdx, wrow in wdf.iterrows():
|
|
||||||
diarize_df['intersection'] = np.minimum(diarize_df['end'], wrow['end']) - np.maximum(diarize_df['start'], wrow['start'])
|
|
||||||
diarize_df['union'] = np.maximum(diarize_df['end'], wrow['end']) - np.minimum(diarize_df['start'], wrow['start'])
|
|
||||||
# remove no hit
|
|
||||||
if not fill_nearest:
|
|
||||||
dia_tmp = diarize_df[diarize_df['intersection'] > 0]
|
|
||||||
else:
|
|
||||||
dia_tmp = diarize_df
|
|
||||||
if len(dia_tmp) == 0:
|
|
||||||
speaker = None
|
|
||||||
else:
|
|
||||||
speaker = dia_tmp.sort_values("intersection", ascending=False).iloc[0][2]
|
|
||||||
speakers.append(speaker)
|
|
||||||
seg['word-segments']['speaker'] = speakers
|
|
||||||
seg["speaker"] = pd.Series(speakers).value_counts().index[0]
|
|
||||||
|
|
||||||
# create word level segments for .srt
|
|
||||||
word_seg = []
|
|
||||||
for seg in result_segments:
|
|
||||||
wseg = pd.DataFrame(seg["word-segments"])
|
|
||||||
for wdx, wrow in wseg.iterrows():
|
|
||||||
if wrow["start"] is not None:
|
|
||||||
speaker = wrow['speaker']
|
|
||||||
if speaker is None or speaker == np.nan:
|
|
||||||
speaker = "UNKNOWN"
|
|
||||||
word_seg.append(
|
|
||||||
{
|
|
||||||
"start": wrow["start"],
|
|
||||||
"end": wrow["end"],
|
|
||||||
"text": f"[{speaker}]: " + seg["text"][int(wrow["segment-text-start"]):int(wrow["segment-text-end"])]
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
# TODO: create segments but split words on new speaker
|
|
||||||
|
|
||||||
return result_segments, word_seg
|
|
||||||
|
|
||||||
class Segment:
|
|
||||||
def __init__(self, start, end, speaker=None):
|
|
||||||
self.start = start
|
|
||||||
self.end = end
|
|
||||||
self.speaker = speaker
|
|
||||||
|
|
||||||
|
|
||||||
def cli():
|
def cli():
|
||||||
from . import available_models
|
from . import available_models
|
||||||
|
|
||||||
@ -776,7 +362,7 @@ def cli():
|
|||||||
parser.add_argument("--max_speakers", default=None, type=int)
|
parser.add_argument("--max_speakers", default=None, type=int)
|
||||||
# output save params
|
# output save params
|
||||||
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
||||||
parser.add_argument("--output_type", default="all", choices=["all", "srt", "srt-word", "vtt", "txt", "tsv", "ass", "ass-char"], help="File type for desired output save")
|
parser.add_argument("--output_type", default="all", choices=["all", "srt", "srt-word", "vtt", "txt", "tsv", "ass", "ass-char", "pickle"], help="File type for desired output save")
|
||||||
|
|
||||||
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
||||||
|
|
||||||
@ -868,6 +454,7 @@ def cli():
|
|||||||
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
|
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
|
||||||
align_model, align_metadata = load_align_model(result["language"], device)
|
align_model, align_metadata = load_align_model(result["language"], device)
|
||||||
|
|
||||||
|
|
||||||
print("Performing alignment...")
|
print("Performing alignment...")
|
||||||
result_aligned = align(result["segments"], align_model, align_metadata, audio_path, device,
|
result_aligned = align(result["segments"], align_model, align_metadata, audio_path, device,
|
||||||
extend_duration=align_extend, start_from_previous=align_from_prev, interpolate_method=interpolate_method)
|
extend_duration=align_extend, start_from_previous=align_from_prev, interpolate_method=interpolate_method)
|
||||||
@ -915,10 +502,16 @@ def cli():
|
|||||||
with open(os.path.join(output_dir, audio_basename + ".ass"), "w", encoding="utf-8") as ass:
|
with open(os.path.join(output_dir, audio_basename + ".ass"), "w", encoding="utf-8") as ass:
|
||||||
write_ass(result_aligned["segments"], file=ass)
|
write_ass(result_aligned["segments"], file=ass)
|
||||||
|
|
||||||
# save ASS character-level
|
# # save ASS character-level
|
||||||
if output_type in ["ass-char", "all"]:
|
if output_type in ["ass-char"]:
|
||||||
with open(os.path.join(output_dir, audio_basename + ".char.ass"), "w", encoding="utf-8") as ass:
|
with open(os.path.join(output_dir, audio_basename + ".char.ass"), "w", encoding="utf-8") as ass:
|
||||||
write_ass(result_aligned["segments"], file=ass, resolution="char")
|
write_ass(result_aligned["segments"], file=ass, resolution="char")
|
||||||
|
|
||||||
|
# save word tsv
|
||||||
|
if output_type in ["pickle"]:
|
||||||
|
exp_fp = os.path.join(output_dir, audio_basename + ".pkl")
|
||||||
|
pd.DataFrame(result_aligned["segments"]).to_pickle(exp_fp)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
cli()
|
cli()
|
||||||
|
@ -2,6 +2,7 @@ import os
|
|||||||
import zlib
|
import zlib
|
||||||
from typing import Callable, TextIO, Iterator, Tuple
|
from typing import Callable, TextIO, Iterator, Tuple
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
def exact_div(x, y):
|
def exact_div(x, y):
|
||||||
assert x % y == 0
|
assert x % y == 0
|
||||||
@ -214,7 +215,7 @@ def write_ass(transcript: Iterator[dict],
|
|||||||
else:
|
else:
|
||||||
speaker_str = ""
|
speaker_str = ""
|
||||||
for cdx, crow in res_segs.iterrows():
|
for cdx, crow in res_segs.iterrows():
|
||||||
if crow['start'] is not None:
|
if not np.isnan(crow['start']):
|
||||||
if resolution == "char":
|
if resolution == "char":
|
||||||
idx_0 = cdx
|
idx_0 = cdx
|
||||||
idx_1 = cdx + 1
|
idx_1 = cdx + 1
|
||||||
|
Reference in New Issue
Block a user