Files
whisperX/whisperx/transcribe.py
2023-01-25 18:42:52 +00:00

518 lines
25 KiB
Python

import argparse
import os
import warnings
from typing import List, Optional, Tuple, Union, Iterator, TYPE_CHECKING
import numpy as np
import torch
import tqdm
from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, CHUNK_LENGTH, pad_or_trim, log_mel_spectrogram, load_audio
from .alignment import load_align_model, align, get_trellis, backtrack, merge_repeats, merge_words
from .decoding import DecodingOptions, DecodingResult
from .diarize import assign_word_speakers, Segment
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
from .utils import exact_div, format_timestamp, optional_int, optional_float, str2bool, interpolate_nans, write_txt, write_vtt, write_srt, write_ass, write_tsv
import pandas as pd
if TYPE_CHECKING:
from .model import Whisper
def transcribe(
model: "Whisper",
audio: Union[str, np.ndarray, torch.Tensor],
*,
verbose: Optional[bool] = None,
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
compression_ratio_threshold: Optional[float] = 2.4,
logprob_threshold: Optional[float] = -1.0,
no_speech_threshold: Optional[float] = 0.6,
condition_on_previous_text: bool = False, # turn off by default due to errors it causes
mel: np.ndarray = None,
**decode_options,
):
"""
Transcribe an audio file using Whisper
Parameters
----------
model: Whisper
The Whisper model instance
audio: Union[str, np.ndarray, torch.Tensor]
The path to the audio file to open, or the audio waveform
verbose: bool
Whether to display the text being decoded to the console. If True, displays all the details,
If False, displays minimal details. If None, does not display anything
temperature: Union[float, Tuple[float, ...]]
Temperature for sampling. It can be a tuple of temperatures, which will be successfully used
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
compression_ratio_threshold: float
If the gzip compression ratio is above this value, treat as failed
logprob_threshold: float
If the average log probability over sampled tokens is below this value, treat as failed
no_speech_threshold: float
If the no_speech probability is higher than this value AND the average log probability
over sampled tokens is below `logprob_threshold`, consider the segment as silent
condition_on_previous_text: bool
if True, the previous output of the model is provided as a prompt for the next window;
disabling may make the text inconsistent across windows, but the model becomes less prone to
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
decode_options: dict
Keyword arguments to construct `DecodingOptions` instances
Returns
-------
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
"""
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
if model.device == torch.device("cpu"):
if torch.cuda.is_available():
warnings.warn("Performing inference on CPU when CUDA is available")
if dtype == torch.float16:
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
dtype = torch.float32
if dtype == torch.float32:
decode_options["fp16"] = False
if mel is None:
mel = log_mel_spectrogram(audio)
if decode_options.get("language", None) is None:
if not model.is_multilingual:
decode_options["language"] = "en"
else:
if verbose:
print("Detecting language using up to the first 30 seconds. Use `--language` to specify the language")
segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
_, probs = model.detect_language(segment)
decode_options["language"] = max(probs, key=probs.get)
if verbose is not None:
print(f"Detected language: {LANGUAGES[decode_options['language']].title()}")
language = decode_options["language"]
task = decode_options.get("task", "transcribe")
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=task)
def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:
temperatures = [temperature] if isinstance(temperature, (int, float)) else temperature
decode_result = None
for t in temperatures:
kwargs = {**decode_options}
if t > 0:
# disable beam_size and patience when t > 0
kwargs.pop("beam_size", None)
kwargs.pop("patience", None)
else:
# disable best_of when t == 0
kwargs.pop("best_of", None)
options = DecodingOptions(**kwargs, temperature=t)
decode_result = model.decode(segment, options)
needs_fallback = False
if compression_ratio_threshold is not None and decode_result.compression_ratio > compression_ratio_threshold:
needs_fallback = True # too repetitive
if logprob_threshold is not None and decode_result.avg_logprob < logprob_threshold:
needs_fallback = True # average log probability is too low
if not needs_fallback:
break
return decode_result
seek = 0
input_stride = exact_div(
N_FRAMES, model.dims.n_audio_ctx
) # mel frames per output token: 2
time_precision = (
input_stride * HOP_LENGTH / SAMPLE_RATE
) # time per output token: 0.02 (seconds)
all_tokens = []
all_segments = []
prompt_reset_since = 0
initial_prompt = decode_options.pop("initial_prompt", None) or []
if initial_prompt:
initial_prompt = tokenizer.encode(" " + initial_prompt.strip())
all_tokens.extend(initial_prompt)
def add_segment(
*, start: float, end: float, text_tokens: torch.Tensor, result: DecodingResult
):
text = tokenizer.decode([token for token in text_tokens if token < tokenizer.eot])
if len(text.strip()) == 0: # skip empty text output
return
all_segments.append(
{
"id": len(all_segments),
"seek": seek,
"start": start,
"end": end,
"text": text,
"tokens": text_tokens.tolist(),
"temperature": result.temperature,
"avg_logprob": result.avg_logprob,
"compression_ratio": result.compression_ratio,
"no_speech_prob": result.no_speech_prob,
}
)
if verbose:
print(f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}")
# show the progress bar when verbose is False (otherwise the transcribed text will be printed)
num_frames = mel.shape[-1]
previous_seek_value = seek
with tqdm.tqdm(total=num_frames, unit='frames', disable=verbose is not False) as pbar:
while seek < num_frames:
timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
segment = pad_or_trim(mel[:, seek:], N_FRAMES).to(model.device).to(dtype)
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
decode_options["prompt"] = all_tokens[prompt_reset_since:]
result: DecodingResult = decode_with_fallback(segment)
tokens = torch.tensor(result.tokens)
if no_speech_threshold is not None:
# no voice activity check
should_skip = result.no_speech_prob > no_speech_threshold
if logprob_threshold is not None and result.avg_logprob > logprob_threshold:
# don't skip if the logprob is high enough, despite the no_speech_prob
should_skip = False
if should_skip:
seek += segment.shape[-1] # fast-forward to the next segment boundary
continue
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(1)
if len(consecutive) > 0: # if the output contains two consecutive timestamp tokens
last_slice = 0
for current_slice in consecutive:
sliced_tokens = tokens[last_slice:current_slice]
start_timestamp_position = (
sliced_tokens[0].item() - tokenizer.timestamp_begin
)
end_timestamp_position = (
sliced_tokens[-1].item() - tokenizer.timestamp_begin
)
# clamp end-time to at least be 1 frame after start-time
end_timestamp_position = max(end_timestamp_position, start_timestamp_position + time_precision)
add_segment(
start=timestamp_offset + start_timestamp_position * time_precision,
end=timestamp_offset + end_timestamp_position * time_precision,
text_tokens=sliced_tokens[1:-1],
result=result,
)
last_slice = current_slice
last_timestamp_position = (
tokens[last_slice - 1].item() - tokenizer.timestamp_begin
)
seek += last_timestamp_position * input_stride
all_tokens.extend(tokens[: last_slice + 1].tolist())
else:
duration = segment_duration
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
if len(timestamps) > 0 and timestamps[-1].item() != tokenizer.timestamp_begin:
# no consecutive timestamps but it has a timestamp; use the last one.
# single timestamp at the end means no speech after the last timestamp.
last_timestamp_position = timestamps[-1].item() - tokenizer.timestamp_begin
duration = last_timestamp_position * time_precision
add_segment(
start=timestamp_offset,
end=timestamp_offset + duration,
text_tokens=tokens,
result=result,
)
seek += segment.shape[-1]
all_tokens.extend(tokens.tolist())
if not condition_on_previous_text or result.temperature > 0.5:
# do not feed the prompt tokens if a high temperature was used
prompt_reset_since = len(all_tokens)
# update progress bar
pbar.update(min(num_frames, seek) - previous_seek_value)
previous_seek_value = seek
return dict(text=tokenizer.decode(all_tokens[len(initial_prompt):]), segments=all_segments, language=language)
def merge_chunks(segments, chunk_size=CHUNK_LENGTH):
"""
Merge VAD segments into larger segments of approximately size ~CHUNK_LENGTH.
TODO: Make sure VAD segment isn't too long, otherwise it will cause OOM when input to alignment model
TODO: Or sliding window alignment model over long segment.
"""
curr_start = 0
curr_end = 0
merged_segments = []
seg_idxs = []
speaker_idxs = []
for sdx, seg in enumerate(segments):
if seg.end - curr_start > chunk_size and curr_end-curr_start > 0:
merged_segments.append({
"start": curr_start,
"end": curr_end,
"segments": seg_idxs,
})
curr_start = seg.start
seg_idxs = []
speaker_idxs = []
curr_end = seg.end
seg_idxs.append((seg.start, seg.end))
speaker_idxs.append(seg.speaker)
# add final
merged_segments.append({
"start": curr_start,
"end": curr_end,
"segments": seg_idxs,
})
return merged_segments
def transcribe_with_vad(
model: "Whisper",
audio: Union[str, np.ndarray, torch.Tensor],
vad_pipeline,
mel = None,
verbose: Optional[bool] = None,
**kwargs
):
"""
Transcribe per VAD segment
"""
if mel is None:
mel = log_mel_spectrogram(audio)
prev = 0
output = {"segments": []}
vad_segments_list = []
vad_segments = vad_pipeline(audio)
for speech_turn in vad_segments.get_timeline().support():
vad_segments_list.append(Segment(speech_turn.start, speech_turn.end, "UNKNOWN"))
# merge segments to approx 30s inputs to make whisper most appropraite
vad_segments = merge_chunks(vad_segments_list)
for sdx, seg_t in enumerate(vad_segments):
if verbose:
print(f"~~ Transcribing VAD chunk: ({format_timestamp(seg_t['start'])} --> {format_timestamp(seg_t['end'])}) ~~")
seg_f_start, seg_f_end = int(seg_t["start"] * SAMPLE_RATE / HOP_LENGTH), int(seg_t["end"] * SAMPLE_RATE / HOP_LENGTH)
local_f_start, local_f_end = seg_f_start - prev, seg_f_end - prev
mel = mel[:, local_f_start:] # seek forward
prev = seg_f_start
local_mel = mel[:, :local_f_end-local_f_start]
result = transcribe(model, audio, mel=local_mel, verbose=verbose, **kwargs)
seg_t["text"] = result["text"]
output["segments"].append(
{
"start": seg_t["start"],
"end": seg_t["end"],
"language": result["language"],
"text": result["text"],
"seg-text": [x["text"] for x in result["segments"]],
"seg-start": [x["start"] for x in result["segments"]],
"seg-end": [x["end"] for x in result["segments"]],
}
)
output["language"] = output["segments"][0]["language"]
return output
def cli():
from . import available_models
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
parser.add_argument("--model", default="small", choices=available_models(), help="name of the Whisper model to use")
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
# alignment params
parser.add_argument("--align_model", default=None, help="Name of phoneme-level ASR model to do alignment")
parser.add_argument("--align_extend", default=2, type=float, help="Seconds before and after to extend the whisper segments for alignment")
parser.add_argument("--align_from_prev", default=True, type=bool, help="Whether to clip the alignment start time of current segment to the end time of the last aligned word of the previous segment")
parser.add_argument("--interpolate_method", default="nearest", choices=["nearest", "linear", "ignore"], help="For word .srt, method to assign timestamps to non-aligned words, or merge them into neighbouring.")
# vad params
parser.add_argument("--vad_filter", action="store_true", help="Whether to first perform VAD filtering to target only transcribe within VAD. Produces more accurate alignment + timestamp, requires more GPU memory & compute.")
parser.add_argument("--vad_input", default=None, type=str)
# diarization params
parser.add_argument("--diarize", action='store_true')
parser.add_argument("--min_speakers", default=None, type=int)
parser.add_argument("--max_speakers", default=None, type=int)
# output save params
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
parser.add_argument("--output_type", default="all", choices=["all", "srt", "srt-word", "vtt", "txt", "tsv", "ass", "ass-char", "pickle"], help="File type for desired output save")
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES.keys()) + sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]), help="language spoken in the audio, specify None to perform language detection")
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default")
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
parser.add_argument("--condition_on_previous_text", type=str2bool, default=False, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
args = parser.parse_args().__dict__
model_name: str = args.pop("model")
model_dir: str = args.pop("model_dir")
output_dir: str = args.pop("output_dir")
output_type: str = args.pop("output_type")
device: str = args.pop("device")
align_model: str = args.pop("align_model")
align_extend: float = args.pop("align_extend")
align_from_prev: bool = args.pop("align_from_prev")
interpolate_method: bool = args.pop("interpolate_method")
vad_filter: bool = args.pop("vad_filter")
vad_input: bool = args.pop("vad_input")
diarize: bool = args.pop("diarize")
min_speakers: int = args.pop("min_speakers")
max_speakers: int = args.pop("max_speakers")
vad_pipeline = None
if vad_input is not None:
vad_input = pd.read_csv(vad_input, header=None, sep= " ")
elif vad_filter:
from pyannote.audio import Pipeline
vad_pipeline = Pipeline.from_pretrained("pyannote/voice-activity-detection")
diarize_pipeline = None
if diarize:
from pyannote.audio import Pipeline
diarize_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1")
os.makedirs(output_dir, exist_ok=True)
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
if args["language"] is not None:
warnings.warn(f'{model_name} is an English-only model but receipted "{args["language"]}"; using English instead.')
args["language"] = "en"
temperature = args.pop("temperature")
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
if temperature_increment_on_fallback is not None:
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
else:
temperature = [temperature]
threads = args.pop("threads")
if threads > 0:
torch.set_num_threads(threads)
from . import load_model
model = load_model(model_name, device=device, download_root=model_dir)
align_language = args["language"] if args["language"] is not None else "en" # default to loading english if not specified
align_model, align_metadata = load_align_model(align_language, device, model_name=align_model)
for audio_path in args.pop("audio"):
if vad_filter:
print("Performing VAD...")
result = transcribe_with_vad(model, audio_path, vad_pipeline, temperature=temperature, **args)
else:
print("Performing transcription...")
result = transcribe(model, audio_path, temperature=temperature, **args)
if result["language"] != align_metadata["language"]:
# load new language
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
align_model, align_metadata = load_align_model(result["language"], device)
print("Performing alignment...")
result_aligned = align(result["segments"], align_model, align_metadata, audio_path, device,
extend_duration=align_extend, start_from_previous=align_from_prev, interpolate_method=interpolate_method)
audio_basename = os.path.basename(audio_path)
if diarize:
print("Performing diarization...")
diarize_segments = diarize_pipeline(audio_path, min_speakers=min_speakers, max_speakers=max_speakers)
diarize_df = pd.DataFrame(diarize_segments.itertracks(yield_label=True))
diarize_df['start'] = diarize_df[0].apply(lambda x: x.start)
diarize_df['end'] = diarize_df[0].apply(lambda x: x.end)
# assumes each utterance is single speaker (needs fix)
result_segments, word_segments = assign_word_speakers(diarize_df, result_aligned["segments"], fill_nearest=True)
result_aligned["segments"] = result_segments
result_aligned["word_segments"] = word_segments
# save TXT
if output_type in ["txt", "all"]:
with open(os.path.join(output_dir, audio_basename + ".txt"), "w", encoding="utf-8") as txt:
write_txt(result_aligned["segments"], file=txt)
# save VTT
if output_type in ["vtt", "all"]:
with open(os.path.join(output_dir, audio_basename + ".vtt"), "w", encoding="utf-8") as vtt:
write_vtt(result_aligned["segments"], file=vtt)
# save SRT
if output_type in ["srt", "all"]:
with open(os.path.join(output_dir, audio_basename + ".srt"), "w", encoding="utf-8") as srt:
write_srt(result_aligned["segments"], file=srt)
# save TSV
if output_type in ["tsv", "all"]:
with open(os.path.join(output_dir, audio_basename + ".srt"), "w", encoding="utf-8") as srt:
write_tsv(result_aligned["segments"], file=srt)
# save SRT word-level
if output_type in ["srt-word", "all"]:
# save per-word SRT
with open(os.path.join(output_dir, audio_basename + ".word.srt"), "w", encoding="utf-8") as srt:
write_srt(result_aligned["word_segments"], file=srt)
# save ASS
if output_type in ["ass", "all"]:
with open(os.path.join(output_dir, audio_basename + ".ass"), "w", encoding="utf-8") as ass:
write_ass(result_aligned["segments"], file=ass)
# # save ASS character-level
if output_type in ["ass-char"]:
with open(os.path.join(output_dir, audio_basename + ".char.ass"), "w", encoding="utf-8") as ass:
write_ass(result_aligned["segments"], file=ass, resolution="char")
# save word tsv
if output_type in ["pickle"]:
exp_fp = os.path.join(output_dir, audio_basename + ".pkl")
pd.DataFrame(result_aligned["segments"]).to_pickle(exp_fp)
if __name__ == "__main__":
cli()