update readme

This commit is contained in:
Max Bain
2023-02-01 22:09:11 +00:00
parent 29e95b746b
commit 0a3fd11562
4 changed files with 52 additions and 36 deletions

View File

@ -27,7 +27,6 @@
<a href="EXAMPLES.md">More examples</a>
</p>
<h6 align="center">Made by Max Bain • :globe_with_meridians: <a href="https://www.maxbain.com">https://www.maxbain.com</a></h6>
<img width="1216" align="center" alt="whisperx-arch" src="https://user-images.githubusercontent.com/36994049/211200186-8b779e26-0bfd-4127-aee2-5a9238b95e1f.png">
@ -55,8 +54,6 @@ This repository refines the timestamps of openAI's Whisper model via forced alig
- Character level timestamps (see `*.char.ass` file output)
- Diarization (still in beta, add `--diarize`)
To enable VAD filtering and Diarization, include your Hugging Face access token that you can generate from [Here](https://huggingface.co/settings/tokens) after the `--hf_token` argument and accept the user agreement for the following models: [Segmentation](https://huggingface.co/pyannote/segmentation) , [Voice Activity Detection (VAD)](https://huggingface.co/pyannote/voice-activity-detection) , and [Speaker Diarization](https://huggingface.co/pyannote/speaker-diarization)
<h2 align="left" id="setup">Setup ⚙️</h2>
Install this package using
@ -74,9 +71,13 @@ $ cd whisperX
$ pip install -e .
```
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
### Voice Activity Detection Filtering & Diarization
To **enable VAD filtering and Diarization**, include your Hugging Face access token that you can generate from [Here](https://huggingface.co/settings/tokens) after the `--hf_token` argument and accept the user agreement for the following models: [Segmentation](https://huggingface.co/pyannote/segmentation) , [Voice Activity Detection (VAD)](https://huggingface.co/pyannote/voice-activity-detection) , and [Speaker Diarization](https://huggingface.co/pyannote/speaker-diarization)
<h2 align="left" id="example">Usage 💬 (command line)</h2>
### English
@ -152,8 +153,9 @@ In addition to forced alignment, the following two modifications have been made
- Not thoroughly tested, especially for non-english, results may vary -- please post issue to let me know the results on your data
- Whisper normalises spoken numbers e.g. "fifty seven" to arabic numerals "57". Need to perform this normalization after alignment, so the phonemes can be aligned. Currently just ignores numbers.
- Assumes the initial whisper timestamps are accurate to some degree (within margin of 2 seconds, adjust if needed -- bigger margins more prone to alignment errors)
- Hacked this up quite quickly, there might be some errors, please raise an issue if you encounter any.
- If not using VAD filter, whisperx assumes the initial whisper timestamps are accurate to some degree (within margin of 2 seconds, adjust if needed -- bigger margins more prone to alignment errors)
- Overlapping speech is not handled particularly well by whisper nor whisperx
- Diariazation is far from perfect.
<h2 align="left" id="contribute">Contribute 🧑‍🏫</h2>
@ -176,29 +178,34 @@ The next major upgrade we are working on is whisper with speaker diarization, so
* [x] Incorporating speaker diarization
* [ ] Improve diarization (word level)
* [x] Inference speedup with batch processing
* [ ] Improve diarization (word level). *Harder than first thought...*
* [ ] Inference speedup with batch processing
<h2 align="left" id="contact">Contact/Support 📇</h2>
Contact maxbain[at]robots[dot]ox[dot]ac[dot]uk for business things.
Contact maxbain[at]robots[dot]ox[dot]ac[dot]uk for queries
<a href="https://www.buymeacoffee.com/maxhbain" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy Me A Coffee" height="41" width="174"></a>
<h2 align="left" id="acks">Acknowledgements 🙏</h2>
Of course, this is mostly just a modification to [openAI's whisper](https://github.com/openai/whisper).
As well as accreditation to this [PyTorch tutorial on forced alignment](https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html)
This work, and my PhD, is supported by the [VGG (Visual Geometry Group)](https://www.robots.ox.ac.uk/~vgg/) and University of Oxford.
Of course, this is builds on [openAI's whisper](https://github.com/openai/whisper).
And borrows important alignment code from [PyTorch tutorial on forced alignment](https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html)
<h2 align="left" id="cite">Citation</h2>
If you use this in your research, just cite the repo,
If you use this in your research, for now just cite the repo,
```bibtex
@misc{bain2022whisperx,
author = {Bain, Max},
author = {Bain, Max and Han, Tengda},
title = {WhisperX},
year = {2022},
publisher = {GitHub},

View File

@ -585,10 +585,9 @@ def cli():
parser.add_argument("--interpolate_method", default="nearest", choices=["nearest", "linear", "ignore"], help="For word .srt, method to assign timestamps to non-aligned words, or merge them into neighbouring.")
# vad params
parser.add_argument("--vad_filter", action="store_true", help="Whether to first perform VAD filtering to target only transcribe within VAD. Produces more accurate alignment + timestamp, requires more GPU memory & compute.")
parser.add_argument("--vad_input", default=None, type=str)
parser.add_argument("--parallel_bs", default=-1, type=int, help="Enable parallel transcribing if > 1")
# diarization params
parser.add_argument("--diarize", action='store_true')
parser.add_argument("--diarize", action="store_true", help="Apply diarization to assign speaker labels to each segment/word")
parser.add_argument("--min_speakers", default=None, type=int)
parser.add_argument("--max_speakers", default=None, type=int)
# output save params
@ -632,7 +631,6 @@ def cli():
hf_token: str = args.pop("hf_token")
vad_filter: bool = args.pop("vad_filter")
vad_input: bool = args.pop("vad_input")
parallel_bs: int = args.pop("parallel_bs")
diarize: bool = args.pop("diarize")
@ -640,9 +638,9 @@ def cli():
max_speakers: int = args.pop("max_speakers")
vad_pipeline = None
if vad_input is not None:
vad_input = pd.read_csv(vad_input, header=None, sep= " ")
elif vad_filter:
if vad_filter:
if hf_token is None:
print("Warning, no huggingface token used, needs to be saved in environment variable, otherwise will throw error loading VAD model...")
from pyannote.audio import Inference
vad_pipeline = Inference("pyannote/segmentation",
pre_aggregation_hook=lambda segmentation: segmentation,
@ -650,6 +648,8 @@ def cli():
diarize_pipeline = None
if diarize:
if hf_token is None:
print("Warning, no --hf_token used, needs to be saved in environment variable, otherwise will throw error loading diarization model...")
from pyannote.audio import Pipeline
diarize_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1",
use_auth_token=hf_token)
@ -756,7 +756,7 @@ def cli():
# save word tsv
if output_type in ["vad"]:
exp_fp = os.path.join(output_dir, audio_basename + ".sad")
wrd_segs = pd.concat([x["word-segments"] for x in result_aligned["segments"]])
wrd_segs = pd.concat([x["word-segments"] for x in result_aligned["segments"]])[['start','end']]
wrd_segs.to_csv(exp_fp, sep='\t', header=None, index=False)
if __name__ == "__main__":
cli()

View File

@ -65,8 +65,8 @@ def write_vtt(transcript: Iterator[dict], file: TextIO):
def write_tsv(transcript: Iterator[dict], file: TextIO):
print("start", "end", "text", sep="\t", file=file)
for segment in transcript:
print(round(1000 * segment['start']), file=file, end="\t")
print(round(1000 * segment['end']), file=file, end="\t")
print(segment['start'], file=file, end="\t")
print(segment['end'], file=file, end="\t")
print(segment['text'].strip().replace("\t", " "), file=file, flush=True)

View File

@ -137,8 +137,6 @@ class Binarize:
def merge_vad(vad_arr, pad_onset=0.0, pad_offset=0.0, min_duration_off=0.0, min_duration_on=0.0):
# because of padding, some active regions might be overlapping: merge them.
# also: fill same speaker gaps shorter than min_duration_off
active = Annotation()
for k, vad_t in enumerate(vad_arr):
@ -161,16 +159,27 @@ def merge_vad(vad_arr, pad_onset=0.0, pad_offset=0.0, min_duration_off=0.0, min_
if __name__ == "__main__":
from pyannote.audio import Inference
hook = lambda segmentation: segmentation
inference = Inference("pyannote/segmentation", pre_aggregation_hook=hook)
audio = "/tmp/11962.wav"
scores = inference(audio)
binarize = Binarize(max_duration=15)
anno = binarize(scores)
res = []
for ann in anno.get_timeline():
res.append((ann.start, ann.end))
# from pyannote.audio import Inference
# hook = lambda segmentation: segmentation
# inference = Inference("pyannote/segmentation", pre_aggregation_hook=hook)
# audio = "/tmp/11962.wav"
# scores = inference(audio)
# binarize = Binarize(max_duration=15)
# anno = binarize(scores)
# res = []
# for ann in anno.get_timeline():
# res.append((ann.start, ann.end))
res = pd.DataFrame(res)
res[2] = res[1] - res[0]
# res = pd.DataFrame(res)
# res[2] = res[1] - res[0]
import pandas as pd
input_fp = "tt298650_sync.wav"
df = pd.read_csv(f"/work/maxbain/tmp/{input_fp}.sad", sep=" ", header=None)
print(len(df))
N = 0.15
g = df[0].sub(df[1].shift())
input_base = input_fp.split('.')[0]
df = df.groupby(g.gt(N).cumsum()).agg({0:'min', 1:'max'})
df.to_csv(f"/work/maxbain/tmp/{input_base}.lab", header=None, index=False, sep=" ")
print(df)
import pdb; pdb.set_trace()