mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
557 lines
27 KiB
Python
557 lines
27 KiB
Python
import argparse
|
|
import os
|
|
import warnings
|
|
from typing import List, Optional, Tuple, Union, Iterator, TYPE_CHECKING
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torchaudio
|
|
from transformers import AutoProcessor, Wav2Vec2ForCTC
|
|
import tqdm
|
|
from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, pad_or_trim, log_mel_spectrogram, load_audio
|
|
from .alignment import get_trellis, backtrack, merge_repeats, merge_words
|
|
from .decoding import DecodingOptions, DecodingResult
|
|
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
|
|
from .utils import exact_div, format_timestamp, optional_int, optional_float, str2bool, write_txt, write_vtt, write_srt, write_ass
|
|
|
|
if TYPE_CHECKING:
|
|
from .model import Whisper
|
|
|
|
LANGUAGES_WITHOUT_SPACES = ["ja", "zh"]
|
|
|
|
DEFAULT_ALIGN_MODELS_TORCH = {
|
|
"en": "WAV2VEC2_ASR_BASE_960H",
|
|
"fr": "VOXPOPULI_ASR_BASE_10K_FR",
|
|
"de": "VOXPOPULI_ASR_BASE_10K_DE",
|
|
"es": "VOXPOPULI_ASR_BASE_10K_ES",
|
|
"it": "VOXPOPULI_ASR_BASE_10K_IT",
|
|
}
|
|
|
|
DEFAULT_ALIGN_MODELS_HF = {
|
|
"ja": "jonatasgrosman/wav2vec2-large-xlsr-53-japanese",
|
|
"zh": "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn",
|
|
"nl": "jonatasgrosman/wav2vec2-large-xlsr-53-dutch",
|
|
"uk": "Yehor/wav2vec2-xls-r-300m-uk-with-small-lm",
|
|
}
|
|
|
|
|
|
def transcribe(
|
|
model: "Whisper",
|
|
audio: Union[str, np.ndarray, torch.Tensor],
|
|
*,
|
|
verbose: Optional[bool] = None,
|
|
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
|
compression_ratio_threshold: Optional[float] = 2.4,
|
|
logprob_threshold: Optional[float] = -1.0,
|
|
no_speech_threshold: Optional[float] = 0.6,
|
|
condition_on_previous_text: bool = False, # turn off by default due to errors it causes
|
|
**decode_options,
|
|
):
|
|
"""
|
|
Transcribe an audio file using Whisper
|
|
|
|
Parameters
|
|
----------
|
|
model: Whisper
|
|
The Whisper model instance
|
|
|
|
audio: Union[str, np.ndarray, torch.Tensor]
|
|
The path to the audio file to open, or the audio waveform
|
|
|
|
verbose: bool
|
|
Whether to display the text being decoded to the console. If True, displays all the details,
|
|
If False, displays minimal details. If None, does not display anything
|
|
|
|
temperature: Union[float, Tuple[float, ...]]
|
|
Temperature for sampling. It can be a tuple of temperatures, which will be successfully used
|
|
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
|
|
|
|
compression_ratio_threshold: float
|
|
If the gzip compression ratio is above this value, treat as failed
|
|
|
|
logprob_threshold: float
|
|
If the average log probability over sampled tokens is below this value, treat as failed
|
|
|
|
no_speech_threshold: float
|
|
If the no_speech probability is higher than this value AND the average log probability
|
|
over sampled tokens is below `logprob_threshold`, consider the segment as silent
|
|
|
|
condition_on_previous_text: bool
|
|
if True, the previous output of the model is provided as a prompt for the next window;
|
|
disabling may make the text inconsistent across windows, but the model becomes less prone to
|
|
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
|
|
|
|
decode_options: dict
|
|
Keyword arguments to construct `DecodingOptions` instances
|
|
|
|
Returns
|
|
-------
|
|
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
|
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
|
"""
|
|
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
|
|
if model.device == torch.device("cpu"):
|
|
if torch.cuda.is_available():
|
|
warnings.warn("Performing inference on CPU when CUDA is available")
|
|
if dtype == torch.float16:
|
|
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
|
|
dtype = torch.float32
|
|
|
|
if dtype == torch.float32:
|
|
decode_options["fp16"] = False
|
|
|
|
mel = log_mel_spectrogram(audio)
|
|
|
|
if decode_options.get("language", None) is None:
|
|
if not model.is_multilingual:
|
|
decode_options["language"] = "en"
|
|
else:
|
|
if verbose:
|
|
print("Detecting language using up to the first 30 seconds. Use `--language` to specify the language")
|
|
segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
|
|
_, probs = model.detect_language(segment)
|
|
decode_options["language"] = max(probs, key=probs.get)
|
|
if verbose is not None:
|
|
print(f"Detected language: {LANGUAGES[decode_options['language']].title()}")
|
|
|
|
language = decode_options["language"]
|
|
task = decode_options.get("task", "transcribe")
|
|
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=task)
|
|
|
|
def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:
|
|
temperatures = [temperature] if isinstance(temperature, (int, float)) else temperature
|
|
decode_result = None
|
|
|
|
for t in temperatures:
|
|
kwargs = {**decode_options}
|
|
if t > 0:
|
|
# disable beam_size and patience when t > 0
|
|
kwargs.pop("beam_size", None)
|
|
kwargs.pop("patience", None)
|
|
else:
|
|
# disable best_of when t == 0
|
|
kwargs.pop("best_of", None)
|
|
|
|
options = DecodingOptions(**kwargs, temperature=t)
|
|
decode_result = model.decode(segment, options)
|
|
|
|
needs_fallback = False
|
|
if compression_ratio_threshold is not None and decode_result.compression_ratio > compression_ratio_threshold:
|
|
needs_fallback = True # too repetitive
|
|
if logprob_threshold is not None and decode_result.avg_logprob < logprob_threshold:
|
|
needs_fallback = True # average log probability is too low
|
|
|
|
if not needs_fallback:
|
|
break
|
|
|
|
return decode_result
|
|
|
|
seek = 0
|
|
input_stride = exact_div(
|
|
N_FRAMES, model.dims.n_audio_ctx
|
|
) # mel frames per output token: 2
|
|
time_precision = (
|
|
input_stride * HOP_LENGTH / SAMPLE_RATE
|
|
) # time per output token: 0.02 (seconds)
|
|
all_tokens = []
|
|
all_segments = []
|
|
prompt_reset_since = 0
|
|
|
|
initial_prompt = decode_options.pop("initial_prompt", None) or []
|
|
if initial_prompt:
|
|
initial_prompt = tokenizer.encode(" " + initial_prompt.strip())
|
|
all_tokens.extend(initial_prompt)
|
|
|
|
def add_segment(
|
|
*, start: float, end: float, text_tokens: torch.Tensor, result: DecodingResult
|
|
):
|
|
text = tokenizer.decode([token for token in text_tokens if token < tokenizer.eot])
|
|
if len(text.strip()) == 0: # skip empty text output
|
|
return
|
|
|
|
all_segments.append(
|
|
{
|
|
"id": len(all_segments),
|
|
"seek": seek,
|
|
"start": start,
|
|
"end": end,
|
|
"text": text,
|
|
"tokens": text_tokens.tolist(),
|
|
"temperature": result.temperature,
|
|
"avg_logprob": result.avg_logprob,
|
|
"compression_ratio": result.compression_ratio,
|
|
"no_speech_prob": result.no_speech_prob,
|
|
}
|
|
)
|
|
if verbose:
|
|
print(f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}")
|
|
|
|
# show the progress bar when verbose is False (otherwise the transcribed text will be printed)
|
|
num_frames = mel.shape[-1]
|
|
previous_seek_value = seek
|
|
|
|
with tqdm.tqdm(total=num_frames, unit='frames', disable=verbose is not False) as pbar:
|
|
while seek < num_frames:
|
|
timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
|
|
segment = pad_or_trim(mel[:, seek:], N_FRAMES).to(model.device).to(dtype)
|
|
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
|
|
|
|
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
|
result: DecodingResult = decode_with_fallback(segment)
|
|
tokens = torch.tensor(result.tokens)
|
|
|
|
if no_speech_threshold is not None:
|
|
# no voice activity check
|
|
should_skip = result.no_speech_prob > no_speech_threshold
|
|
if logprob_threshold is not None and result.avg_logprob > logprob_threshold:
|
|
# don't skip if the logprob is high enough, despite the no_speech_prob
|
|
should_skip = False
|
|
|
|
if should_skip:
|
|
seek += segment.shape[-1] # fast-forward to the next segment boundary
|
|
continue
|
|
|
|
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
|
|
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(1)
|
|
if len(consecutive) > 0: # if the output contains two consecutive timestamp tokens
|
|
last_slice = 0
|
|
for current_slice in consecutive:
|
|
sliced_tokens = tokens[last_slice:current_slice]
|
|
start_timestamp_position = (
|
|
sliced_tokens[0].item() - tokenizer.timestamp_begin
|
|
)
|
|
end_timestamp_position = (
|
|
sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
|
)
|
|
|
|
# clamp end-time to at least be 1 frame after start-time
|
|
end_timestamp_position = max(end_timestamp_position, start_timestamp_position + time_precision)
|
|
|
|
add_segment(
|
|
start=timestamp_offset + start_timestamp_position * time_precision,
|
|
end=timestamp_offset + end_timestamp_position * time_precision,
|
|
text_tokens=sliced_tokens[1:-1],
|
|
result=result,
|
|
)
|
|
last_slice = current_slice
|
|
last_timestamp_position = (
|
|
tokens[last_slice - 1].item() - tokenizer.timestamp_begin
|
|
)
|
|
seek += last_timestamp_position * input_stride
|
|
all_tokens.extend(tokens[: last_slice + 1].tolist())
|
|
else:
|
|
duration = segment_duration
|
|
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
|
if len(timestamps) > 0 and timestamps[-1].item() != tokenizer.timestamp_begin:
|
|
# no consecutive timestamps but it has a timestamp; use the last one.
|
|
# single timestamp at the end means no speech after the last timestamp.
|
|
last_timestamp_position = timestamps[-1].item() - tokenizer.timestamp_begin
|
|
duration = last_timestamp_position * time_precision
|
|
|
|
add_segment(
|
|
start=timestamp_offset,
|
|
end=timestamp_offset + duration,
|
|
text_tokens=tokens,
|
|
result=result,
|
|
)
|
|
|
|
seek += segment.shape[-1]
|
|
all_tokens.extend(tokens.tolist())
|
|
|
|
if not condition_on_previous_text or result.temperature > 0.5:
|
|
# do not feed the prompt tokens if a high temperature was used
|
|
prompt_reset_since = len(all_tokens)
|
|
|
|
# update progress bar
|
|
pbar.update(min(num_frames, seek) - previous_seek_value)
|
|
previous_seek_value = seek
|
|
|
|
return dict(text=tokenizer.decode(all_tokens[len(initial_prompt):]), segments=all_segments, language=language)
|
|
|
|
|
|
def align(
|
|
transcript: Iterator[dict],
|
|
model: torch.nn.Module,
|
|
align_model_metadata: dict,
|
|
audio: Union[str, np.ndarray, torch.Tensor],
|
|
device: str,
|
|
extend_duration: float = 0.0,
|
|
start_from_previous: bool = True,
|
|
drop_non_aligned_words: bool = False,
|
|
):
|
|
if not torch.is_tensor(audio):
|
|
if isinstance(audio, str):
|
|
audio = load_audio(audio)
|
|
audio = torch.from_numpy(audio)
|
|
if len(audio.shape) == 1:
|
|
audio = audio.unsqueeze(0)
|
|
|
|
MAX_DURATION = audio.shape[1] / SAMPLE_RATE
|
|
|
|
model_dictionary = align_model_metadata['dictionary']
|
|
model_lang = align_model_metadata['language']
|
|
model_type = align_model_metadata['type']
|
|
|
|
prev_t2 = 0
|
|
word_segments_list = []
|
|
for idx, segment in enumerate(transcript):
|
|
# first we pad
|
|
t1 = max(segment['start'] - extend_duration, 0)
|
|
t2 = min(segment['end'] + extend_duration, MAX_DURATION)
|
|
|
|
# use prev_t2 as current t1 if it's later
|
|
if start_from_previous and t1 < prev_t2:
|
|
t1 = prev_t2
|
|
|
|
# check if timestamp range is still valid
|
|
if t1 >= MAX_DURATION:
|
|
print("Failed to align segment: original start time longer than audio duration, skipping...")
|
|
continue
|
|
if t2 - t1 < 0.02:
|
|
print("Failed to align segment: duration smaller than 0.02s time precision")
|
|
continue
|
|
|
|
f1 = int(t1 * SAMPLE_RATE)
|
|
f2 = int(t2 * SAMPLE_RATE)
|
|
|
|
waveform_segment = audio[:, f1:f2]
|
|
|
|
with torch.inference_mode():
|
|
if model_type == "torchaudio":
|
|
emissions, _ = model(waveform_segment.to(device))
|
|
elif model_type == "huggingface":
|
|
emissions = model(waveform_segment.to(device)).logits
|
|
else:
|
|
raise NotImplementedError(f"Align model of type {model_type} not supported.")
|
|
emissions = torch.log_softmax(emissions, dim=-1)
|
|
|
|
emission = emissions[0].cpu().detach()
|
|
transcription = segment['text'].strip()
|
|
if model_lang not in LANGUAGES_WITHOUT_SPACES:
|
|
t_words = transcription.split(' ')
|
|
else:
|
|
t_words = [c for c in transcription]
|
|
|
|
t_words_clean = [''.join([w for w in word if w.lower() in model_dictionary.keys()]) for word in t_words]
|
|
t_words_nonempty = [x for x in t_words_clean if x != ""]
|
|
t_words_nonempty_idx = [x for x in range(len(t_words_clean)) if t_words_clean[x] != ""]
|
|
segment['word-level'] = []
|
|
|
|
fail_fallback = False
|
|
if len(t_words_nonempty) > 0:
|
|
transcription_cleaned = "|".join(t_words_nonempty).lower()
|
|
tokens = [model_dictionary[c] for c in transcription_cleaned]
|
|
trellis = get_trellis(emission, tokens)
|
|
path = backtrack(trellis, emission, tokens)
|
|
if path is None:
|
|
print("Failed to align segment: backtrack failed, resorting to original...")
|
|
fail_fallback = True
|
|
else:
|
|
segments = merge_repeats(path, transcription_cleaned)
|
|
word_segments = merge_words(segments)
|
|
ratio = waveform_segment.size(0) / (trellis.size(0) - 1)
|
|
|
|
duration = t2 - t1
|
|
local = []
|
|
t_local = [None] * len(t_words)
|
|
for wdx, word in enumerate(word_segments):
|
|
t1_ = ratio * word.start
|
|
t2_ = ratio * word.end
|
|
local.append((t1_, t2_))
|
|
t_local[t_words_nonempty_idx[wdx]] = (t1_ * duration + t1, t2_ * duration + t1)
|
|
t1_actual = t1 + local[0][0] * duration
|
|
t2_actual = t1 + local[-1][1] * duration
|
|
|
|
segment['start'] = t1_actual
|
|
segment['end'] = t2_actual
|
|
prev_t2 = segment['end']
|
|
|
|
# for the .ass output
|
|
for x in range(len(t_local)):
|
|
curr_word = t_words[x]
|
|
curr_timestamp = t_local[x]
|
|
if curr_timestamp is not None:
|
|
segment['word-level'].append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
|
else:
|
|
segment['word-level'].append({"text": curr_word, "start": None, "end": None})
|
|
|
|
# for per-word .srt ouput
|
|
# merge missing words to previous, or merge with next word ahead if idx == 0
|
|
found_first_ts = False
|
|
for x in range(len(t_local)):
|
|
curr_word = t_words[x]
|
|
curr_timestamp = t_local[x]
|
|
if curr_timestamp is not None:
|
|
word_segments_list.append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
|
found_first_ts = True
|
|
elif not drop_non_aligned_words:
|
|
# then we merge
|
|
if not found_first_ts:
|
|
t_words[x+1] = " ".join([curr_word, t_words[x+1]])
|
|
else:
|
|
word_segments_list[-1]['text'] += ' ' + curr_word
|
|
else:
|
|
fail_fallback = True
|
|
|
|
if fail_fallback:
|
|
# then we resort back to original whisper timestamps
|
|
# segment['start] and segment['end'] are unchanged
|
|
prev_t2 = 0
|
|
segment['word-level'].append({"text": segment['text'], "start": segment['start'], "end":segment['end']})
|
|
word_segments_list.append({"text": segment['text'], "start": segment['start'], "end":segment['end']})
|
|
|
|
print(f"[{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}] {segment['text']}")
|
|
|
|
return {"segments": transcript, "word_segments": word_segments_list}
|
|
|
|
def load_align_model(language_code, device, model_name=None):
|
|
if model_name is None:
|
|
# use default model
|
|
if language_code in DEFAULT_ALIGN_MODELS_TORCH:
|
|
model_name = DEFAULT_ALIGN_MODELS_TORCH[language_code]
|
|
elif language_code in DEFAULT_ALIGN_MODELS_HF:
|
|
model_name = DEFAULT_ALIGN_MODELS_HF[language_code]
|
|
else:
|
|
print(f"There is no default alignment model set for this language ({language_code}).\
|
|
Please find a wav2vec2.0 model finetuned on this language in https://huggingface.co/models, then pass the model name in --align_model [MODEL_NAME]")
|
|
raise ValueError(f"No default align-model for language: {language_code}")
|
|
|
|
if model_name in torchaudio.pipelines.__all__:
|
|
pipeline_type = "torchaudio"
|
|
bundle = torchaudio.pipelines.__dict__[model_name]
|
|
align_model = bundle.get_model().to(device)
|
|
labels = bundle.get_labels()
|
|
align_dictionary = {c.lower(): i for i, c in enumerate(labels)}
|
|
else:
|
|
try:
|
|
processor = AutoProcessor.from_pretrained(model_name)
|
|
align_model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
|
except Exception as e:
|
|
print(e)
|
|
print(f"Error loading model from huggingface, check https://huggingface.co/models for finetuned wav2vec2.0 models")
|
|
raise ValueError(f'The chosen align_model "{model_name}" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14)')
|
|
pipeline_type = "huggingface"
|
|
align_model = align_model.to(device)
|
|
labels = processor.tokenizer.get_vocab()
|
|
align_dictionary = {char.lower(): code for char,code in processor.tokenizer.get_vocab().items()}
|
|
|
|
align_metadata = {"language": language_code, "dictionary": align_dictionary, "type": pipeline_type}
|
|
|
|
return align_model, align_metadata
|
|
|
|
def cli():
|
|
from . import available_models
|
|
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
|
|
parser.add_argument("--model", default="small", choices=available_models(), help="name of the Whisper model to use")
|
|
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
|
|
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
|
|
# alignment params
|
|
parser.add_argument("--align_model", default=None, help="Name of phoneme-level ASR model to do alignment")
|
|
parser.add_argument("--align_extend", default=2, type=float, help="Seconds before and after to extend the whisper segments for alignment")
|
|
parser.add_argument("--align_from_prev", default=True, type=bool, help="Whether to clip the alignment start time of current segment to the end time of the last aligned word of the previous segment")
|
|
parser.add_argument("--drop_non_aligned", action="store_true", help="For word .srt, whether to drop non aliged words, or merge them into neighbouring.")
|
|
|
|
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
|
parser.add_argument("--output_type", default="srt", choices=['all', 'srt', 'vtt', 'txt'], help="File type for desired output save")
|
|
|
|
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
|
|
|
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
|
|
parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES.keys()) + sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]), help="language spoken in the audio, specify None to perform language detection")
|
|
|
|
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
|
|
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
|
|
parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
|
|
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
|
|
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default")
|
|
|
|
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
|
|
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
|
|
parser.add_argument("--condition_on_previous_text", type=str2bool, default=False, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
|
|
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
|
|
|
|
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
|
|
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
|
|
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
|
|
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
|
|
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
|
|
|
|
args = parser.parse_args().__dict__
|
|
model_name: str = args.pop("model")
|
|
model_dir: str = args.pop("model_dir")
|
|
output_dir: str = args.pop("output_dir")
|
|
output_type: str = args.pop("output_type")
|
|
device: str = args.pop("device")
|
|
|
|
align_model: str = args.pop("align_model")
|
|
align_extend: float = args.pop("align_extend")
|
|
align_from_prev: bool = args.pop("align_from_prev")
|
|
drop_non_aligned: bool = args.pop("drop_non_aligned")
|
|
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
|
|
if args["language"] is not None:
|
|
warnings.warn(f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead.")
|
|
args["language"] = "en"
|
|
|
|
temperature = args.pop("temperature")
|
|
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
|
|
if temperature_increment_on_fallback is not None:
|
|
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
|
|
else:
|
|
temperature = [temperature]
|
|
|
|
threads = args.pop("threads")
|
|
if threads > 0:
|
|
torch.set_num_threads(threads)
|
|
|
|
from . import load_model
|
|
model = load_model(model_name, device=device, download_root=model_dir)
|
|
|
|
align_language = args["language"] if args["language"] is not None else "en" # default to loading english if not specified
|
|
align_model, align_metadata = load_align_model(align_language, device, model_name=align_model)
|
|
|
|
for audio_path in args.pop("audio"):
|
|
print("Performing transcription...")
|
|
result = transcribe(model, audio_path, temperature=temperature, **args)
|
|
|
|
if result["language"] != align_metadata["language"]:
|
|
# load new language
|
|
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
|
|
align_model, align_metadata = load_align_model(result["language"], device)
|
|
|
|
print("Performing alignment...")
|
|
result_aligned = align(result["segments"], align_model, align_metadata, audio_path, device,
|
|
extend_duration=align_extend, start_from_previous=align_from_prev, drop_non_aligned_words=drop_non_aligned)
|
|
audio_basename = os.path.basename(audio_path)
|
|
|
|
# save TXT
|
|
if output_type in ["txt", "all"]:
|
|
with open(os.path.join(output_dir, audio_basename + ".txt"), "w", encoding="utf-8") as txt:
|
|
write_txt(result_aligned["segments"], file=txt)
|
|
|
|
# save VTT
|
|
if output_type in ["vtt", "all"]:
|
|
with open(os.path.join(output_dir, audio_basename + ".vtt"), "w", encoding="utf-8") as vtt:
|
|
write_vtt(result_aligned["segments"], file=vtt)
|
|
|
|
# save SRT
|
|
if output_type in ["srt", "all"]:
|
|
with open(os.path.join(output_dir, audio_basename + ".srt"), "w", encoding="utf-8") as srt:
|
|
write_srt(result_aligned["segments"], file=srt)
|
|
|
|
# save per-word SRT
|
|
with open(os.path.join(output_dir, audio_basename + ".word.srt"), "w", encoding="utf-8") as srt:
|
|
write_srt(result_aligned["word_segments"], file=srt)
|
|
|
|
# save ASS
|
|
with open(os.path.join(output_dir, audio_basename + ".ass"), "w", encoding="utf-8") as ass:
|
|
write_ass(result_aligned["segments"], file=ass)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
cli()
|