mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
215 lines
13 KiB
Python
215 lines
13 KiB
Python
import argparse
|
||
import gc
|
||
import os
|
||
import warnings
|
||
|
||
import numpy as np
|
||
import torch
|
||
|
||
from .alignment import align, load_align_model
|
||
from .asr import load_model
|
||
from .audio import load_audio
|
||
from .diarize import DiarizationPipeline, assign_word_speakers
|
||
from .utils import (LANGUAGES, TO_LANGUAGE_CODE, get_writer, optional_float,
|
||
optional_int, str2bool)
|
||
|
||
|
||
def cli():
|
||
# fmt: off
|
||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
|
||
parser.add_argument("--model", default="small", help="name of the Whisper model to use")
|
||
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
|
||
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
|
||
parser.add_argument("--batch_size", default=8, type=int, help="device to use for PyTorch inference")
|
||
parser.add_argument("--compute_type", default="float16", type=str, choices=["float16", "float32", "int8"], help="compute type for computation")
|
||
|
||
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
||
parser.add_argument("--output_format", "-f", type=str, default="all", choices=["all", "srt", "vtt", "txt", "tsv", "json"], help="format of the output file; if not specified, all available formats will be produced")
|
||
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
||
|
||
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
|
||
parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES.keys()) + sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]), help="language spoken in the audio, specify None to perform language detection")
|
||
|
||
# alignment params
|
||
parser.add_argument("--align_model", default=None, help="Name of phoneme-level ASR model to do alignment")
|
||
parser.add_argument("--interpolate_method", default="nearest", choices=["nearest", "linear", "ignore"], help="For word .srt, method to assign timestamps to non-aligned words, or merge them into neighbouring.")
|
||
parser.add_argument("--no_align", action='store_true', help="Do not perform phoneme alignment")
|
||
|
||
# vad params
|
||
parser.add_argument("--vad_onset", type=float, default=0.500, help="Onset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected")
|
||
parser.add_argument("--vad_offset", type=float, default=0.363, help="Offset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected.")
|
||
|
||
# diarization params
|
||
parser.add_argument("--diarize", action="store_true", help="Apply diarization to assign speaker labels to each segment/word")
|
||
parser.add_argument("--min_speakers", default=None, type=int)
|
||
parser.add_argument("--max_speakers", default=None, type=int)
|
||
|
||
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
|
||
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
|
||
parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
|
||
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
|
||
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default")
|
||
|
||
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
|
||
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
|
||
parser.add_argument("--condition_on_previous_text", type=str2bool, default=False, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
|
||
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
|
||
|
||
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
|
||
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
|
||
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
|
||
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
|
||
|
||
parser.add_argument("--max_line_width", type=optional_int, default=None, help="(not possible with --no_align) the maximum number of characters in a line before breaking the line")
|
||
parser.add_argument("--max_line_count", type=optional_int, default=None, help="(requires --no_align) the maximum number of lines in a segment")
|
||
parser.add_argument("--highlight_words", type=str2bool, default=False, help="(requires --word_timestamps True) underline each word as it is spoken in srt and vtt")
|
||
|
||
# parser.add_argument("--word_timestamps", type=str2bool, default=False, help="(experimental) extract word-level timestamps and refine the results based on them")
|
||
# parser.add_argument("--prepend_punctuations", type=str, default="\"\'“¿([{-", help="if word_timestamps is True, merge these punctuation symbols with the next word")
|
||
# parser.add_argument("--append_punctuations", type=str, default="\"\'.。,,!!??::”)]}、", help="if word_timestamps is True, merge these punctuation symbols with the previous word")
|
||
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
|
||
|
||
parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face Access Token to access PyAnnote gated models")
|
||
# parser.add_argument("--model_flush", action="store_true", help="Flush memory from each model after use, reduces GPU requirement but slower processing >1 audio file.")
|
||
parser.add_argument("--tmp_dir", default=None, help="Temporary directory to write audio file if input if not .wav format (only for VAD).")
|
||
# fmt: on
|
||
|
||
args = parser.parse_args().__dict__
|
||
model_name: str = args.pop("model")
|
||
batch_size: int = args.pop("batch_size")
|
||
output_dir: str = args.pop("output_dir")
|
||
output_format: str = args.pop("output_format")
|
||
device: str = args.pop("device")
|
||
compute_type: str = args.pop("compute_type")
|
||
|
||
# model_flush: bool = args.pop("model_flush")
|
||
os.makedirs(output_dir, exist_ok=True)
|
||
|
||
tmp_dir: str = args.pop("tmp_dir")
|
||
if tmp_dir is not None:
|
||
os.makedirs(tmp_dir, exist_ok=True)
|
||
|
||
align_model: str = args.pop("align_model")
|
||
interpolate_method: str = args.pop("interpolate_method")
|
||
no_align: bool = args.pop("no_align")
|
||
|
||
hf_token: str = args.pop("hf_token")
|
||
vad_onset: float = args.pop("vad_onset")
|
||
vad_offset: float = args.pop("vad_offset")
|
||
|
||
diarize: bool = args.pop("diarize")
|
||
min_speakers: int = args.pop("min_speakers")
|
||
max_speakers: int = args.pop("max_speakers")
|
||
|
||
# TODO: check model loading works.
|
||
|
||
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
|
||
if args["language"] is not None:
|
||
warnings.warn(
|
||
f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead."
|
||
)
|
||
args["language"] = "en"
|
||
|
||
temperature = args.pop("temperature")
|
||
if (increment := args.pop("temperature_increment_on_fallback")) is not None:
|
||
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, increment))
|
||
else:
|
||
temperature = [temperature]
|
||
|
||
if (threads := args.pop("threads")) > 0:
|
||
torch.set_num_threads(threads)
|
||
|
||
asr_options = {
|
||
"beam_size": args.pop("beam_size"),
|
||
"patience": args.pop("patience"),
|
||
"length_penalty": args.pop("length_penalty"),
|
||
"temperatures": temperature,
|
||
"compression_ratio_threshold": args.pop("compression_ratio_threshold"),
|
||
"log_prob_threshold": args.pop("logprob_threshold"),
|
||
"no_speech_threshold": args.pop("no_speech_threshold"),
|
||
"condition_on_previous_text": False,
|
||
"initial_prompt": args.pop("initial_prompt"),
|
||
}
|
||
|
||
writer = get_writer(output_format, output_dir)
|
||
word_options = ["highlight_words", "max_line_count", "max_line_width"]
|
||
if no_align:
|
||
for option in word_options:
|
||
if args[option]:
|
||
parser.error(f"--{option} requires --word_timestamps True")
|
||
if args["max_line_count"] and not args["max_line_width"]:
|
||
warnings.warn("--max_line_count has no effect without --max_line_width")
|
||
writer_args = {arg: args.pop(arg) for arg in word_options}
|
||
|
||
# Part 1: VAD & ASR Loop
|
||
results = []
|
||
tmp_results = []
|
||
# model = load_model(model_name, device=device, download_root=model_dir)
|
||
model = load_model(model_name, device=device, compute_type=compute_type, language=args['language'], asr_options=asr_options, vad_options={"vad_onset": vad_onset, "vad_offset": vad_offset},)
|
||
|
||
for audio_path in args.pop("audio"):
|
||
audio = load_audio(audio_path)
|
||
# >> VAD & ASR
|
||
print(">>Performing transcription...")
|
||
result = model.transcribe(audio, batch_size=batch_size)
|
||
results.append((result, audio_path))
|
||
|
||
# Unload Whisper and VAD
|
||
del model
|
||
gc.collect()
|
||
torch.cuda.empty_cache()
|
||
|
||
# Part 2: Align Loop
|
||
if not no_align:
|
||
tmp_results = results
|
||
results = []
|
||
align_language = args["language"] if args["language"] is not None else "en" # default to loading english if not specified
|
||
align_model, align_metadata = load_align_model(align_language, device, model_name=align_model)
|
||
for result, audio_path in tmp_results:
|
||
# >> Align
|
||
if len(tmp_results) > 1:
|
||
input_audio = audio_path
|
||
else:
|
||
# lazily load audio from part 1
|
||
input_audio = audio
|
||
|
||
if align_model is not None and len(result["segments"]) > 0:
|
||
if result.get("language", "en") != align_metadata["language"]:
|
||
# load new language
|
||
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
|
||
align_model, align_metadata = load_align_model(result["language"], device)
|
||
print(">>Performing alignment...")
|
||
result = align(result["segments"], align_model, align_metadata, input_audio, device, interpolate_method=interpolate_method)
|
||
results.append((result, audio_path))
|
||
|
||
# Unload align model
|
||
del align_model
|
||
gc.collect()
|
||
torch.cuda.empty_cache()
|
||
|
||
# >> Diarize
|
||
if diarize:
|
||
if hf_token is None:
|
||
print("Warning, no --hf_token used, needs to be saved in environment variable, otherwise will throw error loading diarization model...")
|
||
tmp_results = results
|
||
results = []
|
||
diarize_model = DiarizationPipeline(use_auth_token=hf_token)
|
||
for result, input_audio_path in tmp_results:
|
||
diarize_segments = diarize_model(input_audio_path, min_speakers=min_speakers, max_speakers=max_speakers)
|
||
results_segments, word_segments = assign_word_speakers(diarize_segments, result["segments"])
|
||
result = {"segments": results_segments, "word_segments": word_segments}
|
||
results.append((result, input_audio_path))
|
||
|
||
# >> Write
|
||
for result, audio_path in results:
|
||
# Remove pandas dataframes from result so that
|
||
# we can serialize the result with json
|
||
for seg in result["segments"]:
|
||
seg.pop("word-segments", None)
|
||
seg.pop("char-segments", None)
|
||
|
||
writer(result, audio_path, writer_args)
|
||
|
||
if __name__ == "__main__":
|
||
cli() |