Files
whisperX/whisperx/vads/vad.py

75 lines
2.4 KiB
Python

from typing import Optional
import pandas as pd
from pyannote.core import Annotation, Segment
class Vad:
def __init__(self, vad_onset):
if not (0 < vad_onset < 1):
raise ValueError(
"vad_onset is a decimal value between 0 and 1."
)
@staticmethod
def preprocess_audio(audio):
pass
# keep merge_chunks as static so it can be also used by manually assigned vad_model (see 'load_model')
@staticmethod
def merge_chunks(segments,
chunk_size,
onset: float,
offset: Optional[float]):
"""
Merge operation described in paper
"""
curr_end = 0
merged_segments = []
seg_idxs: list[tuple]= []
speaker_idxs: list[Optional[str]] = []
curr_start = segments[0].start
for seg in segments:
if seg.end - curr_start > chunk_size and curr_end - curr_start > 0:
merged_segments.append({
"start": curr_start,
"end": curr_end,
"segments": seg_idxs,
})
curr_start = seg.start
seg_idxs = []
speaker_idxs = []
curr_end = seg.end
seg_idxs.append((seg.start, seg.end))
speaker_idxs.append(seg.speaker)
# add final
merged_segments.append({
"start": curr_start,
"end": curr_end,
"segments": seg_idxs,
})
return merged_segments
# Unused function
@staticmethod
def merge_vad(vad_arr, pad_onset=0.0, pad_offset=0.0, min_duration_off=0.0, min_duration_on=0.0):
active = Annotation()
for k, vad_t in enumerate(vad_arr):
region = Segment(vad_t[0] - pad_onset, vad_t[1] + pad_offset)
active[region, k] = 1
if pad_offset > 0.0 or pad_onset > 0.0 or min_duration_off > 0.0:
active = active.support(collar=min_duration_off)
# remove tracks shorter than min_duration_on
if min_duration_on > 0:
for segment, track in list(active.itertracks()):
if segment.duration < min_duration_on:
del active[segment, track]
active = active.for_json()
active_segs = pd.DataFrame([x['segment'] for x in active['content']])
return active_segs