import hashlib import io import os import urllib import warnings from typing import List, Optional, Union import torch from tqdm import tqdm from .audio import load_audio, log_mel_spectrogram, pad_or_trim from .decoding import DecodingOptions, DecodingResult, decode, detect_language from .model import Whisper, ModelDimensions from .transcribe import transcribe, load_align_model, align _MODELS = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def _download(url: str, root: str, in_memory: bool) -> Union[bytes, str]: os.makedirs(root, exist_ok=True) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, os.path.basename(url)) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): with open(download_target, "rb") as f: model_bytes = f.read() if hashlib.sha256(model_bytes).hexdigest() == expected_sha256: return model_bytes if in_memory else download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) model_bytes = open(download_target, "rb").read() if hashlib.sha256(model_bytes).hexdigest() != expected_sha256: raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.") return model_bytes if in_memory else download_target def available_models() -> List[str]: """Returns the names of available models""" return list(_MODELS.keys()) def load_model(name: str, device: Optional[Union[str, torch.device]] = None, download_root: str = None, in_memory: bool = False) -> Whisper: """ Load a Whisper ASR model Parameters ---------- name : str one of the official model names listed by `whisper.available_models()`, or path to a model checkpoint containing the model dimensions and the model state_dict. device : Union[str, torch.device] the PyTorch device to put the model into download_root: str path to download the model files; by default, it uses "~/.cache/whisper" in_memory: bool whether to preload the model weights into host memory Returns ------- model : Whisper The Whisper ASR model instance """ if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" if download_root is None: download_root = os.getenv( "XDG_CACHE_HOME", os.path.join(os.path.expanduser("~"), ".cache", "whisper") ) if name in _MODELS: checkpoint_file = _download(_MODELS[name], download_root, in_memory) elif os.path.isfile(name): checkpoint_file = open(name, "rb").read() if in_memory else name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") with (io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb")) as fp: checkpoint = torch.load(fp, map_location=device) del checkpoint_file dims = ModelDimensions(**checkpoint["dims"]) model = Whisper(dims) model.load_state_dict(checkpoint["model_state_dict"]) return model.to(device)