import argparse import importlib.metadata import platform import torch from whisperx.utils import (LANGUAGES, TO_LANGUAGE_CODE, optional_float, optional_int, str2bool) def cli(): # fmt: off parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe") parser.add_argument("--model", default="small", help="name of the Whisper model to use") parser.add_argument("--model_cache_only", type=str2bool, default=False, help="If True, will not attempt to download models, instead using cached models from --model_dir") parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default") parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference") parser.add_argument("--device_index", default=0, type=int, help="device index to use for FasterWhisper inference") parser.add_argument("--batch_size", default=8, type=int, help="the preferred batch size for inference") parser.add_argument("--compute_type", default="float16", type=str, choices=["float16", "float32", "int8"], help="compute type for computation") parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs") parser.add_argument("--output_format", "-f", type=str, default="all", choices=["all", "srt", "vtt", "txt", "tsv", "json", "aud"], help="format of the output file; if not specified, all available formats will be produced") parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages") parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')") parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES.keys()) + sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]), help="language spoken in the audio, specify None to perform language detection") # alignment params parser.add_argument("--align_model", default=None, help="Name of phoneme-level ASR model to do alignment") parser.add_argument("--interpolate_method", default="nearest", choices=["nearest", "linear", "ignore"], help="For word .srt, method to assign timestamps to non-aligned words, or merge them into neighbouring.") parser.add_argument("--no_align", action='store_true', help="Do not perform phoneme alignment") parser.add_argument("--return_char_alignments", action='store_true', help="Return character-level alignments in the output json file") # vad params parser.add_argument("--vad_method", type=str, default="pyannote", choices=["pyannote", "silero"], help="VAD method to be used") parser.add_argument("--vad_onset", type=float, default=0.500, help="Onset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected") parser.add_argument("--vad_offset", type=float, default=0.363, help="Offset threshold for VAD (see pyannote.audio), reduce this if speech is not being detected.") parser.add_argument("--chunk_size", type=int, default=30, help="Chunk size for merging VAD segments. Default is 30, reduce this if the chunk is too long.") # diarization params parser.add_argument("--diarize", action="store_true", help="Apply diarization to assign speaker labels to each segment/word") parser.add_argument("--min_speakers", default=None, type=int, help="Minimum number of speakers to in audio file") parser.add_argument("--max_speakers", default=None, type=int, help="Maximum number of speakers to in audio file") parser.add_argument("--diarize_model", default="pyannote/speaker-diarization-3.1", type=str, help="Name of the speaker diarization model to use") parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling") parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature") parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero") parser.add_argument("--patience", type=float, default=1.0, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search") parser.add_argument("--length_penalty", type=float, default=1.0, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default") parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations") parser.add_argument("--suppress_numerals", action="store_true", help="whether to suppress numeric symbols and currency symbols during sampling, since wav2vec2 cannot align them correctly") parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.") parser.add_argument("--condition_on_previous_text", type=str2bool, default=False, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop") parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default") parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below") parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed") parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed") parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence") parser.add_argument("--max_line_width", type=optional_int, default=None, help="(not possible with --no_align) the maximum number of characters in a line before breaking the line") parser.add_argument("--max_line_count", type=optional_int, default=None, help="(not possible with --no_align) the maximum number of lines in a segment") parser.add_argument("--highlight_words", type=str2bool, default=False, help="(not possible with --no_align) underline each word as it is spoken in srt and vtt") parser.add_argument("--segment_resolution", type=str, default="sentence", choices=["sentence", "chunk"], help="(not possible with --no_align) the maximum number of characters in a line before breaking the line") parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS") parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face Access Token to access PyAnnote gated models") parser.add_argument("--print_progress", type=str2bool, default = False, help = "if True, progress will be printed in transcribe() and align() methods.") parser.add_argument("--version", "-V", action="version", version=f"%(prog)s {importlib.metadata.version('whisperx')}",help="Show whisperx version information and exit") parser.add_argument("--python-version", "-P", action="version", version=f"Python {platform.python_version()} ({platform.python_implementation()})",help="Show python version information and exit") # fmt: on args = parser.parse_args().__dict__ from whisperx.transcribe import transcribe_task transcribe_task(args, parser) if __name__ == "__main__": cli()