mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
Compare commits
9 Commits
v3.3.4
...
b94778fd60
Author | SHA1 | Date | |
---|---|---|---|
b94778fd60 | |||
399010fd12 | |||
d3dcb1175f | |||
4f99f1f67c | |||
d700b56c9c | |||
b343241253 | |||
6fe0a8784a | |||
5012650d0f | |||
108bd0c400 |
3
.github/workflows/build-and-release.yml
vendored
3
.github/workflows/build-and-release.yml
vendored
@ -17,6 +17,9 @@ jobs:
|
|||||||
version: "0.5.14"
|
version: "0.5.14"
|
||||||
python-version: "3.9"
|
python-version: "3.9"
|
||||||
|
|
||||||
|
- name: Check if lockfile is up to date
|
||||||
|
run: uv lock --check
|
||||||
|
|
||||||
- name: Build package
|
- name: Build package
|
||||||
run: uv build
|
run: uv build
|
||||||
|
|
||||||
|
3
.github/workflows/python-compatibility.yml
vendored
3
.github/workflows/python-compatibility.yml
vendored
@ -23,6 +23,9 @@ jobs:
|
|||||||
version: "0.5.14"
|
version: "0.5.14"
|
||||||
python-version: ${{ matrix.python-version }}
|
python-version: ${{ matrix.python-version }}
|
||||||
|
|
||||||
|
- name: Check if lockfile is up to date
|
||||||
|
run: uv lock --check
|
||||||
|
|
||||||
- name: Install the project
|
- name: Install the project
|
||||||
run: uv sync --all-extras
|
run: uv sync --all-extras
|
||||||
|
|
||||||
|
@ -170,7 +170,7 @@ result = model.transcribe(audio, batch_size=batch_size)
|
|||||||
print(result["segments"]) # before alignment
|
print(result["segments"]) # before alignment
|
||||||
|
|
||||||
# delete model if low on GPU resources
|
# delete model if low on GPU resources
|
||||||
# import gc; gc.collect(); torch.cuda.empty_cache(); del model
|
# import gc; import torch; gc.collect(); torch.cuda.empty_cache(); del model
|
||||||
|
|
||||||
# 2. Align whisper output
|
# 2. Align whisper output
|
||||||
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
||||||
@ -179,7 +179,7 @@ result = whisperx.align(result["segments"], model_a, metadata, audio, device, re
|
|||||||
print(result["segments"]) # after alignment
|
print(result["segments"]) # after alignment
|
||||||
|
|
||||||
# delete model if low on GPU resources
|
# delete model if low on GPU resources
|
||||||
# import gc; gc.collect(); torch.cuda.empty_cache(); del model_a
|
# import gc; import torch; gc.collect(); torch.cuda.empty_cache(); del model_a
|
||||||
|
|
||||||
# 3. Assign speaker labels
|
# 3. Assign speaker labels
|
||||||
diarize_model = whisperx.diarize.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
|
diarize_model = whisperx.diarize.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
|
||||||
|
@ -13,11 +13,11 @@ dependencies = [
|
|||||||
"faster-whisper>=1.1.1",
|
"faster-whisper>=1.1.1",
|
||||||
"nltk>=3.9.1",
|
"nltk>=3.9.1",
|
||||||
"numpy>=2.0.2",
|
"numpy>=2.0.2",
|
||||||
"onnxruntime>=1.19",
|
"onnxruntime>=1.19,<1.20.0",
|
||||||
"pandas>=2.2.3",
|
"pandas>=2.2.3",
|
||||||
"pyannote-audio>=3.3.2",
|
"pyannote-audio>=3.3.2",
|
||||||
"torch>=2.5.1",
|
"torch<2.4.0",
|
||||||
"torchaudio>=2.5.1",
|
"torchaudio",
|
||||||
"transformers>=4.48.0",
|
"transformers>=4.48.0",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@ -43,6 +43,7 @@ def cli():
|
|||||||
parser.add_argument("--diarize", action="store_true", help="Apply diarization to assign speaker labels to each segment/word")
|
parser.add_argument("--diarize", action="store_true", help="Apply diarization to assign speaker labels to each segment/word")
|
||||||
parser.add_argument("--min_speakers", default=None, type=int, help="Minimum number of speakers to in audio file")
|
parser.add_argument("--min_speakers", default=None, type=int, help="Minimum number of speakers to in audio file")
|
||||||
parser.add_argument("--max_speakers", default=None, type=int, help="Maximum number of speakers to in audio file")
|
parser.add_argument("--max_speakers", default=None, type=int, help="Maximum number of speakers to in audio file")
|
||||||
|
parser.add_argument("--diarize_model", default="pyannote/speaker-diarization-3.1", type=str, help="Name of the speaker diarization model to use")
|
||||||
|
|
||||||
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
|
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
|
||||||
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
|
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
|
||||||
|
@ -11,13 +11,14 @@ from whisperx.types import TranscriptionResult, AlignedTranscriptionResult
|
|||||||
class DiarizationPipeline:
|
class DiarizationPipeline:
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
model_name="pyannote/speaker-diarization-3.1",
|
model_name=None,
|
||||||
use_auth_token=None,
|
use_auth_token=None,
|
||||||
device: Optional[Union[str, torch.device]] = "cpu",
|
device: Optional[Union[str, torch.device]] = "cpu",
|
||||||
):
|
):
|
||||||
if isinstance(device, str):
|
if isinstance(device, str):
|
||||||
device = torch.device(device)
|
device = torch.device(device)
|
||||||
self.model = Pipeline.from_pretrained(model_name, use_auth_token=use_auth_token).to(device)
|
model_config = model_name or "pyannote/speaker-diarization-3.1"
|
||||||
|
self.model = Pipeline.from_pretrained(model_config, use_auth_token=use_auth_token).to(device)
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self,
|
self,
|
||||||
|
@ -57,6 +57,7 @@ def transcribe_task(args: dict, parser: argparse.ArgumentParser):
|
|||||||
diarize: bool = args.pop("diarize")
|
diarize: bool = args.pop("diarize")
|
||||||
min_speakers: int = args.pop("min_speakers")
|
min_speakers: int = args.pop("min_speakers")
|
||||||
max_speakers: int = args.pop("max_speakers")
|
max_speakers: int = args.pop("max_speakers")
|
||||||
|
diarize_model_name: str = args.pop("diarize_model")
|
||||||
print_progress: bool = args.pop("print_progress")
|
print_progress: bool = args.pop("print_progress")
|
||||||
|
|
||||||
if args["language"] is not None:
|
if args["language"] is not None:
|
||||||
@ -204,8 +205,9 @@ def transcribe_task(args: dict, parser: argparse.ArgumentParser):
|
|||||||
)
|
)
|
||||||
tmp_results = results
|
tmp_results = results
|
||||||
print(">>Performing diarization...")
|
print(">>Performing diarization...")
|
||||||
|
print(">>Using model:", diarize_model_name)
|
||||||
results = []
|
results = []
|
||||||
diarize_model = DiarizationPipeline(use_auth_token=hf_token, device=device)
|
diarize_model = DiarizationPipeline(model_name=diarize_model_name, use_auth_token=hf_token, device=device)
|
||||||
for result, input_audio_path in tmp_results:
|
for result, input_audio_path in tmp_results:
|
||||||
diarize_segments = diarize_model(
|
diarize_segments = diarize_model(
|
||||||
input_audio_path, min_speakers=min_speakers, max_speakers=max_speakers
|
input_audio_path, min_speakers=min_speakers, max_speakers=max_speakers
|
||||||
|
Reference in New Issue
Block a user