mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 10:07:28 -04:00
Compare commits
2 Commits
f34f0a133a
...
3dfe6c6ea0
Author | SHA1 | Date | |
---|---|---|---|
3dfe6c6ea0 | |||
d700b56c9c |
16
README.md
16
README.md
@ -97,6 +97,18 @@ uv sync --all-extras --dev
|
||||
|
||||
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
|
||||
|
||||
### 3. Docker Images
|
||||
|
||||
Execute pre-built WhisperX container images:
|
||||
|
||||
```bash
|
||||
docker run --gpus all -it -v ".:/app" ghcr.io/jim60105/whisperx:base-en -- --output_format srt audio.mp3
|
||||
docker run --gpus all -it -v ".:/app" ghcr.io/jim60105/whisperx:large-v3-ja -- --output_format srt audio.mp3
|
||||
docker run --gpus all -it -v ".:/app" ghcr.io/jim60105/whisperx:no_model -- --model tiny --language en --output_format srt audio.mp3
|
||||
```
|
||||
|
||||
Review the tag lists in this repository: [jim60105/docker-whisperX](https://github.com/jim60105/docker-whisperX)
|
||||
|
||||
### Common Issues & Troubleshooting 🔧
|
||||
|
||||
#### libcudnn Dependencies (GPU Users)
|
||||
@ -189,7 +201,7 @@ result = model.transcribe(audio, batch_size=batch_size)
|
||||
print(result["segments"]) # before alignment
|
||||
|
||||
# delete model if low on GPU resources
|
||||
# import gc; gc.collect(); torch.cuda.empty_cache(); del model
|
||||
# import gc; import torch; gc.collect(); torch.cuda.empty_cache(); del model
|
||||
|
||||
# 2. Align whisper output
|
||||
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
||||
@ -198,7 +210,7 @@ result = whisperx.align(result["segments"], model_a, metadata, audio, device, re
|
||||
print(result["segments"]) # after alignment
|
||||
|
||||
# delete model if low on GPU resources
|
||||
# import gc; gc.collect(); torch.cuda.empty_cache(); del model_a
|
||||
# import gc; import torch; gc.collect(); torch.cuda.empty_cache(); del model_a
|
||||
|
||||
# 3. Assign speaker labels
|
||||
diarize_model = whisperx.diarize.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
|
||||
|
Reference in New Issue
Block a user