mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
new logic, diarization, vad filtering
This commit is contained in:
17
README.md
17
README.md
@ -48,6 +48,13 @@ This repository refines the timestamps of openAI's Whisper model via forced alig
|
||||
|
||||
**Forced Alignment** refers to the process by which orthographic transcriptions are aligned to audio recordings to automatically generate phone level segmentation.
|
||||
|
||||
<h2 align="left", id="highlights">New🚨</h2>
|
||||
|
||||
- VAD filtering: Voice Activity Detection (VAD) from [Pyannote.audio](https://huggingface.co/pyannote/voice-activity-detection) is used as a preprocessing step to remove reliance on whisper timestamps and only transcribe audio segments containing speech. add `--vad_filter` flag, increases timestamp accuracy and robustness (requires more GPU mem due to 30s inputs in wav2vec2)
|
||||
- Character level timestamps (see `*.char.ass` file output)
|
||||
- Diarization (still in beta, add `--diarization`)
|
||||
|
||||
|
||||
<h2 align="left" id="setup">Setup ⚙️</h2>
|
||||
Install this package using
|
||||
|
||||
@ -76,9 +83,9 @@ Run whisper on example segment (using default params)
|
||||
whisperx examples/sample01.wav
|
||||
|
||||
|
||||
For increased timestamp accuracy, at the cost of higher gpu mem, use bigger models e.g.
|
||||
For increased timestamp accuracy, at the cost of higher gpu mem, use bigger models and VAD filtering e.g.
|
||||
|
||||
whisperx examples/sample01.wav --model large.en --align_model WAV2VEC2_ASR_LARGE_LV60K_960H
|
||||
whisperx examples/sample01.wav --model large.en --vad_filter --align_model WAV2VEC2_ASR_LARGE_LV60K_960H
|
||||
|
||||
Result using *WhisperX* with forced alignment to wav2vec2.0 large:
|
||||
|
||||
@ -162,7 +169,11 @@ The next major upgrade we are working on is whisper with speaker diarization, so
|
||||
|
||||
[x] ~~Python usage~~ done
|
||||
|
||||
[ ] Incorporating word-level speaker diarization
|
||||
[x] ~~Character level timestamps~~
|
||||
|
||||
[x] ~~Incorporating speaker diarization~~
|
||||
|
||||
[ ] Improve diarization (word level)
|
||||
|
||||
[ ] Inference speedup with batch processing
|
||||
|
||||
|
@ -6,3 +6,4 @@ soundfile
|
||||
more-itertools
|
||||
transformers>=4.19.0
|
||||
ffmpeg-python==0.2.0
|
||||
pyannote.audio
|
||||
|
@ -11,7 +11,7 @@ from tqdm import tqdm
|
||||
from .audio import load_audio, log_mel_spectrogram, pad_or_trim
|
||||
from .decoding import DecodingOptions, DecodingResult, decode, detect_language
|
||||
from .model import Whisper, ModelDimensions
|
||||
from .transcribe import transcribe, load_align_model, align
|
||||
from .transcribe import transcribe, load_align_model, align, transcribe_with_vad
|
||||
|
||||
_MODELS = {
|
||||
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
|
||||
|
@ -113,7 +113,7 @@ def log_mel_spectrogram(audio: Union[str, np.ndarray, torch.Tensor], n_mels: int
|
||||
|
||||
window = torch.hann_window(N_FFT).to(audio.device)
|
||||
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
|
||||
magnitudes = stft[:, :-1].abs() ** 2
|
||||
magnitudes = stft[..., :-1].abs() ** 2
|
||||
|
||||
filters = mel_filters(audio.device, n_mels)
|
||||
mel_spec = filters @ magnitudes
|
||||
|
@ -82,8 +82,8 @@ class MultiHeadAttention(nn.Module):
|
||||
k = kv_cache[self.key]
|
||||
v = kv_cache[self.value]
|
||||
|
||||
wv = self.qkv_attention(q, k, v, mask)
|
||||
return self.out(wv)
|
||||
wv, qk = self.qkv_attention(q, k, v, mask)
|
||||
return self.out(wv), qk
|
||||
|
||||
def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
|
||||
n_batch, n_ctx, n_state = q.shape
|
||||
@ -95,9 +95,10 @@ class MultiHeadAttention(nn.Module):
|
||||
qk = q @ k
|
||||
if mask is not None:
|
||||
qk = qk + mask[:n_ctx, :n_ctx]
|
||||
qk = qk.float()
|
||||
|
||||
w = F.softmax(qk.float(), dim=-1).to(q.dtype)
|
||||
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
|
||||
w = F.softmax(qk, dim=-1).to(q.dtype)
|
||||
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
@ -121,9 +122,9 @@ class ResidualAttentionBlock(nn.Module):
|
||||
mask: Optional[Tensor] = None,
|
||||
kv_cache: Optional[dict] = None,
|
||||
):
|
||||
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)
|
||||
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
|
||||
if self.cross_attn:
|
||||
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)
|
||||
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
|
||||
x = x + self.mlp(self.mlp_ln(x))
|
||||
return x
|
||||
|
||||
|
@ -1737,6 +1737,5 @@
|
||||
"yoghurt": "yogurt",
|
||||
"yoghurts": "yogurts",
|
||||
"mhm": "hmm",
|
||||
"mm": "hmm",
|
||||
"mmm": "hmm"
|
||||
}
|
@ -12,7 +12,7 @@ from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, CHUNK_LENGTH, pad_or_trim,
|
||||
from .alignment import get_trellis, backtrack, merge_repeats, merge_words
|
||||
from .decoding import DecodingOptions, DecodingResult
|
||||
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
|
||||
from .utils import exact_div, format_timestamp, optional_int, optional_float, str2bool, write_txt, write_vtt, write_srt, write_ass
|
||||
from .utils import exact_div, format_timestamp, optional_int, optional_float, str2bool, interpolate_nans, write_txt, write_vtt, write_srt, write_ass, write_tsv
|
||||
import pandas as pd
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -280,8 +280,39 @@ def align(
|
||||
device: str,
|
||||
extend_duration: float = 0.0,
|
||||
start_from_previous: bool = True,
|
||||
drop_non_aligned_words: bool = False,
|
||||
interpolate_method: str = "nearest",
|
||||
):
|
||||
"""
|
||||
Force align phoneme recognition predictions to known transcription
|
||||
|
||||
Parameters
|
||||
----------
|
||||
transcript: Iterator[dict]
|
||||
The Whisper model instance
|
||||
|
||||
model: torch.nn.Module
|
||||
Alignment model (wav2vec2)
|
||||
|
||||
audio: Union[str, np.ndarray, torch.Tensor]
|
||||
The path to the audio file to open, or the audio waveform
|
||||
|
||||
device: str
|
||||
cuda device
|
||||
|
||||
extend_duration: float
|
||||
Amount to pad input segments by. If not using vad--filter then recommended to use 2 seconds
|
||||
|
||||
If the gzip compression ratio is above this value, treat as failed
|
||||
|
||||
interpolate_method: str ["nearest", "linear", "ignore"]
|
||||
Method to assign timestamps to non-aligned words. Words are not able to be aligned when none of the characters occur in the align model dictionary.
|
||||
"nearest" copies timestamp of nearest word within the segment. "linear" is linear interpolation. "drop" removes that word from output.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
||||
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
||||
"""
|
||||
if not torch.is_tensor(audio):
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
@ -291,30 +322,78 @@ def align(
|
||||
|
||||
MAX_DURATION = audio.shape[1] / SAMPLE_RATE
|
||||
|
||||
model_dictionary = align_model_metadata['dictionary']
|
||||
model_lang = align_model_metadata['language']
|
||||
model_type = align_model_metadata['type']
|
||||
model_dictionary = align_model_metadata["dictionary"]
|
||||
model_lang = align_model_metadata["language"]
|
||||
model_type = align_model_metadata["type"]
|
||||
|
||||
aligned_segments = []
|
||||
|
||||
prev_t2 = 0
|
||||
total_word_segments_list = []
|
||||
vad_segments_list = []
|
||||
for idx, segment in enumerate(transcript):
|
||||
word_segments_list = []
|
||||
# first we pad
|
||||
t1 = max(segment['start'] - extend_duration, 0)
|
||||
t2 = min(segment['end'] + extend_duration, MAX_DURATION)
|
||||
sdx = 0
|
||||
for segment in transcript:
|
||||
while True:
|
||||
segment_align_success = False
|
||||
|
||||
# use prev_t2 as current t1 if it's later
|
||||
# strip spaces at beginning / end, but keep track of the amount.
|
||||
num_leading = len(segment["text"]) - len(segment["text"].lstrip())
|
||||
num_trailing = len(segment["text"]) - len(segment["text"].rstrip())
|
||||
transcription = segment["text"]
|
||||
|
||||
# TODO: convert number tokenizer / symbols to phonetic words for alignment.
|
||||
# e.g. "$300" -> "three hundred dollars"
|
||||
# currently "$300" is ignored since no characters present in the phonetic dictionary
|
||||
|
||||
# split into words
|
||||
if model_lang not in LANGUAGES_WITHOUT_SPACES:
|
||||
per_word = transcription.split(" ")
|
||||
else:
|
||||
per_word = transcription
|
||||
|
||||
# first check that characters in transcription can be aligned (they are contained in align model"s dictionary)
|
||||
clean_char, clean_cdx = [], []
|
||||
for cdx, char in enumerate(transcription):
|
||||
char_ = char.lower()
|
||||
# wav2vec2 models use "|" character to represent spaces
|
||||
if model_lang not in LANGUAGES_WITHOUT_SPACES:
|
||||
char_ = char_.replace(" ", "|")
|
||||
|
||||
# ignore whitespace at beginning and end of transcript
|
||||
if cdx < num_leading:
|
||||
pass
|
||||
elif cdx > len(transcription) - num_trailing - 1:
|
||||
pass
|
||||
elif char_ in model_dictionary.keys():
|
||||
clean_char.append(char_)
|
||||
clean_cdx.append(cdx)
|
||||
|
||||
clean_wdx = []
|
||||
for wdx, wrd in enumerate(per_word):
|
||||
if any([c in model_dictionary.keys() for c in wrd]):
|
||||
clean_wdx.append(wdx)
|
||||
|
||||
# if no characters are in the dictionary, then we skip this segment...
|
||||
if len(clean_char) == 0:
|
||||
print("Failed to align segment: no characters in this segment found in model dictionary, resorting to original...")
|
||||
break
|
||||
|
||||
transcription_cleaned = "".join(clean_char)
|
||||
tokens = [model_dictionary[c] for c in transcription_cleaned]
|
||||
|
||||
# pad according original timestamps
|
||||
t1 = max(segment["start"] - extend_duration, 0)
|
||||
t2 = min(segment["end"] + extend_duration, MAX_DURATION)
|
||||
|
||||
# use prev_t2 as current t1 if it"s later
|
||||
if start_from_previous and t1 < prev_t2:
|
||||
t1 = prev_t2
|
||||
|
||||
# check if timestamp range is still valid
|
||||
if t1 >= MAX_DURATION:
|
||||
print("Failed to align segment: original start time longer than audio duration, skipping...")
|
||||
continue
|
||||
break
|
||||
if t2 - t1 < 0.02:
|
||||
print("Failed to align segment: duration smaller than 0.02s time precision")
|
||||
continue
|
||||
break
|
||||
|
||||
f1 = int(t1 * SAMPLE_RATE)
|
||||
f2 = int(t2 * SAMPLE_RATE)
|
||||
@ -332,130 +411,177 @@ def align(
|
||||
|
||||
emission = emissions[0].cpu().detach()
|
||||
|
||||
if "vad" in segment and len(segment['vad']) > 1 and '|' in model_dictionary:
|
||||
ratio = waveform_segment.size(0) / emission.size(0)
|
||||
space_idx = model_dictionary['|']
|
||||
# find non-vad segments
|
||||
for i in range(1, len(segment['vad'])):
|
||||
start = segment['vad'][i-1][1]
|
||||
end = segment['vad'][i][0]
|
||||
if start < end: # check if there is a gap between intervals
|
||||
non_vad_f1 = int(start / ratio)
|
||||
non_vad_f2 = int(end / ratio)
|
||||
# non-vad should be masked, use space to do so
|
||||
emission[non_vad_f1:non_vad_f2, :] = float("-inf")
|
||||
emission[non_vad_f1:non_vad_f2, space_idx] = 0
|
||||
|
||||
|
||||
start = segment['vad'][i][1]
|
||||
end = segment['end']
|
||||
non_vad_f1 = int(start / ratio)
|
||||
non_vad_f2 = int(end / ratio)
|
||||
# non-vad should be masked, use space to do so
|
||||
emission[non_vad_f1:non_vad_f2, :] = float("-inf")
|
||||
emission[non_vad_f1:non_vad_f2, space_idx] = 0
|
||||
|
||||
transcription = segment['text'].strip()
|
||||
if model_lang not in LANGUAGES_WITHOUT_SPACES:
|
||||
t_words = transcription.split(' ')
|
||||
else:
|
||||
t_words = [c for c in transcription]
|
||||
|
||||
t_words_clean = [''.join([w for w in word if w.lower() in model_dictionary.keys()]) for word in t_words]
|
||||
t_words_nonempty = [x for x in t_words_clean if x != ""]
|
||||
t_words_nonempty_idx = [x for x in range(len(t_words_clean)) if t_words_clean[x] != ""]
|
||||
segment['word-level'] = []
|
||||
|
||||
fail_fallback = False
|
||||
if len(t_words_nonempty) > 0:
|
||||
transcription_cleaned = "|".join(t_words_nonempty).lower()
|
||||
tokens = [model_dictionary[c] for c in transcription_cleaned]
|
||||
trellis = get_trellis(emission, tokens)
|
||||
path = backtrack(trellis, emission, tokens)
|
||||
if path is None:
|
||||
print("Failed to align segment: backtrack failed, resorting to original...")
|
||||
fail_fallback = True
|
||||
else:
|
||||
segments = merge_repeats(path, transcription_cleaned)
|
||||
word_segments = merge_words(segments)
|
||||
ratio = waveform_segment.size(0) / (trellis.size(0) - 1)
|
||||
break
|
||||
char_segments = merge_repeats(path, transcription_cleaned)
|
||||
# word_segments = merge_words(char_segments)
|
||||
|
||||
|
||||
# sub-segments
|
||||
if "seg-text" not in segment:
|
||||
segment["seg-text"] = [transcription]
|
||||
|
||||
v = 0
|
||||
seg_lens = [0] + [len(x) for x in segment["seg-text"]]
|
||||
seg_lens_cumsum = [v := v + n for n in seg_lens]
|
||||
sub_seg_idx = 0
|
||||
|
||||
char_level = {
|
||||
"start": [],
|
||||
"end": [],
|
||||
"score": [],
|
||||
"word-index": [],
|
||||
}
|
||||
|
||||
word_level = {
|
||||
"start": [],
|
||||
"end": [],
|
||||
"score": [],
|
||||
"segment-text-start": [],
|
||||
"segment-text-end": []
|
||||
}
|
||||
|
||||
wdx = 0
|
||||
seg_start_actual, seg_end_actual = None, None
|
||||
duration = t2 - t1
|
||||
local = []
|
||||
t_local = [None] * len(t_words)
|
||||
for wdx, word in enumerate(word_segments):
|
||||
t1_ = ratio * word.start
|
||||
t2_ = ratio * word.end
|
||||
local.append((t1_, t2_))
|
||||
t_local[t_words_nonempty_idx[wdx]] = (t1_ * duration + t1, t2_ * duration + t1)
|
||||
t1_actual = t1 + local[0][0] * duration
|
||||
t2_actual = t1 + local[-1][1] * duration
|
||||
ratio = duration * waveform_segment.size(0) / (trellis.size(0) - 1)
|
||||
cdx_prev = 0
|
||||
for cdx, char in enumerate(transcription + " "):
|
||||
is_last = False
|
||||
if cdx == len(transcription):
|
||||
break
|
||||
elif cdx+1 == len(transcription):
|
||||
is_last = True
|
||||
|
||||
segment['start'] = t1_actual
|
||||
segment['end'] = t2_actual
|
||||
prev_t2 = segment['end']
|
||||
|
||||
# for the .ass output
|
||||
for x in range(len(t_local)):
|
||||
curr_word = t_words[x]
|
||||
curr_timestamp = t_local[x]
|
||||
if curr_timestamp is not None:
|
||||
segment['word-level'].append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
||||
start, end, score = None, None, None
|
||||
if cdx in clean_cdx:
|
||||
char_seg = char_segments[clean_cdx.index(cdx)]
|
||||
start = char_seg.start * ratio + t1
|
||||
end = char_seg.end * ratio + t1
|
||||
score = char_seg.score
|
||||
|
||||
char_level["start"].append(start)
|
||||
char_level["end"].append(end)
|
||||
char_level["score"].append(score)
|
||||
char_level["word-index"].append(wdx)
|
||||
|
||||
# word-level info
|
||||
if model_lang in LANGUAGES_WITHOUT_SPACES:
|
||||
# character == word
|
||||
wdx += 1
|
||||
elif is_last or transcription[cdx+1] == " " or cdx == seg_lens_cumsum[sub_seg_idx+1] - 1:
|
||||
wdx += 1
|
||||
word_level["start"].append(None)
|
||||
word_level["end"].append(None)
|
||||
word_level["score"].append(None)
|
||||
word_level["segment-text-start"].append(cdx_prev-seg_lens_cumsum[sub_seg_idx])
|
||||
word_level["segment-text-end"].append(cdx+1-seg_lens_cumsum[sub_seg_idx])
|
||||
cdx_prev = cdx+2
|
||||
|
||||
if is_last or cdx == seg_lens_cumsum[sub_seg_idx+1] - 1:
|
||||
if model_lang not in LANGUAGES_WITHOUT_SPACES:
|
||||
char_level = pd.DataFrame(char_level)
|
||||
word_level = pd.DataFrame(word_level)
|
||||
|
||||
not_space = pd.Series(list(segment["seg-text"][sub_seg_idx])) != " "
|
||||
word_level["start"] = char_level[not_space].groupby("word-index")["start"].min() # take min of all chars in a word ignoring space
|
||||
word_level["end"] = char_level[not_space].groupby("word-index")["end"].max() # take max of all chars in a word
|
||||
|
||||
# fill missing
|
||||
if interpolate_method != "ignore":
|
||||
word_level["start"] = interpolate_nans(word_level["start"], method=interpolate_method)
|
||||
word_level["end"] = interpolate_nans(word_level["end"], method=interpolate_method)
|
||||
word_level["start"] = word_level["start"].values.tolist()
|
||||
word_level["end"] = word_level["end"].values.tolist()
|
||||
word_level["score"] = char_level.groupby("word-index")["score"].mean() # take mean of all scores
|
||||
|
||||
char_level = char_level.replace({np.nan:None}).to_dict("list")
|
||||
word_level = pd.DataFrame(word_level).replace({np.nan:None}).to_dict("list")
|
||||
else:
|
||||
segment['word-level'].append({"text": curr_word, "start": None, "end": None})
|
||||
word_level = None
|
||||
|
||||
# for per-word .srt ouput
|
||||
# merge missing words to previous, or merge with next word ahead if idx == 0
|
||||
found_first_ts = False
|
||||
for x in range(len(t_local)):
|
||||
curr_word = t_words[x]
|
||||
curr_timestamp = t_local[x]
|
||||
if curr_timestamp is not None:
|
||||
word_segments_list.append({"text": curr_word, "start": curr_timestamp[0], "end": curr_timestamp[1]})
|
||||
found_first_ts = True
|
||||
elif not drop_non_aligned_words:
|
||||
# then we merge
|
||||
if not found_first_ts:
|
||||
t_words[x+1] = " ".join([curr_word, t_words[x+1]])
|
||||
else:
|
||||
word_segments_list[-1]['text'] += ' ' + curr_word
|
||||
else:
|
||||
fail_fallback = True
|
||||
aligned_segments.append(
|
||||
{
|
||||
"text": segment["seg-text"][sub_seg_idx],
|
||||
"start": seg_start_actual,
|
||||
"end": seg_end_actual,
|
||||
"char-segments": char_level,
|
||||
"word-segments": word_level
|
||||
}
|
||||
)
|
||||
if "language" in segment:
|
||||
aligned_segments[-1]["language"] = segment["language"]
|
||||
|
||||
if fail_fallback:
|
||||
# then we resort back to original whisper timestamps
|
||||
# segment['start] and segment['end'] are unchanged
|
||||
print(f"[{format_timestamp(aligned_segments[-1]['start'])} --> {format_timestamp(aligned_segments[-1]['end'])}] {aligned_segments[-1]['text']}")
|
||||
|
||||
|
||||
char_level = {
|
||||
"start": [],
|
||||
"end": [],
|
||||
"score": [],
|
||||
"word-index": [],
|
||||
}
|
||||
word_level = {
|
||||
"start": [],
|
||||
"end": [],
|
||||
"score": [],
|
||||
"segment-text-start": [],
|
||||
"segment-text-end": []
|
||||
}
|
||||
wdx = 0
|
||||
cdx_prev = cdx + 2
|
||||
sub_seg_idx += 1
|
||||
seg_start_actual, seg_end_actual = None, None
|
||||
|
||||
|
||||
# take min-max for actual segment-level timestamp
|
||||
if seg_start_actual is None and start is not None:
|
||||
seg_start_actual = start
|
||||
if end is not None:
|
||||
seg_end_actual = end
|
||||
|
||||
|
||||
prev_t2 = segment["end"]
|
||||
|
||||
segment_align_success = True
|
||||
# end while True loop
|
||||
break
|
||||
|
||||
# reset prev_t2 due to drifting issues
|
||||
if not segment_align_success:
|
||||
prev_t2 = 0
|
||||
segment['word-level'].append({"text": segment['text'], "start": segment['start'], "end":segment['end']})
|
||||
word_segments_list.append({"text": segment['text'], "start": segment['start'], "end":segment['end']})
|
||||
|
||||
if 'vad' in segment:
|
||||
curr_vdx = 0
|
||||
curr_text = ''
|
||||
for wrd_seg in word_segments_list:
|
||||
if wrd_seg['start'] > segment['vad'][curr_vdx][1]:
|
||||
curr_speaker = segment['speakers'][curr_vdx]
|
||||
vad_segments_list.append(
|
||||
{'start': segment['vad'][curr_vdx][0],
|
||||
'end': segment['vad'][curr_vdx][1],
|
||||
'text': f"[{curr_speaker}]: " + curr_text.strip()}
|
||||
# shift segment index by amount of sub-segments
|
||||
if "seg-text" in segment:
|
||||
sdx += len(segment["seg-text"])
|
||||
else:
|
||||
sdx += 1
|
||||
|
||||
# create word level segments for .srt
|
||||
word_seg = []
|
||||
for seg in aligned_segments:
|
||||
if model_lang in LANGUAGES_WITHOUT_SPACES:
|
||||
# character based
|
||||
seg["word-segments"] = seg["char-segments"]
|
||||
seg["word-segments"]["segment-text-start"] = range(len(seg['word-segments']['start']))
|
||||
seg["word-segments"]["segment-text-end"] = range(1, len(seg['word-segments']['start'])+1)
|
||||
|
||||
wseg = pd.DataFrame(seg["word-segments"]).replace({np.nan:None})
|
||||
for wdx, wrow in wseg.iterrows():
|
||||
if wrow["start"] is not None:
|
||||
word_seg.append(
|
||||
{
|
||||
"start": wrow["start"],
|
||||
"end": wrow["end"],
|
||||
"text": seg["text"][int(wrow["segment-text-start"]):int(wrow["segment-text-end"])]
|
||||
}
|
||||
)
|
||||
curr_vdx += 1
|
||||
curr_text = ''
|
||||
curr_text += ' ' + wrd_seg['text']
|
||||
if len(curr_text) > 0:
|
||||
curr_speaker = segment['speakers'][curr_vdx]
|
||||
vad_segments_list.append(
|
||||
{'start': segment['vad'][curr_vdx][0],
|
||||
'end': segment['vad'][curr_vdx][1],
|
||||
'text': f"[{curr_speaker}]: " + curr_text.strip()}
|
||||
)
|
||||
curr_text = ''
|
||||
total_word_segments_list += word_segments_list
|
||||
print(f"[{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}] {segment['text']}")
|
||||
|
||||
|
||||
return {"segments": transcript, "word_segments": total_word_segments_list, "vad_segments": vad_segments_list}
|
||||
return {"segments": aligned_segments, "word_segments": word_seg}
|
||||
|
||||
def load_align_model(language_code, device, model_name=None):
|
||||
if model_name is None:
|
||||
@ -492,11 +618,11 @@ def load_align_model(language_code, device, model_name=None):
|
||||
|
||||
return align_model, align_metadata
|
||||
|
||||
def merge_chunks(segments, chunk_size=CHUNK_LENGTH, speakers=False):
|
||||
'''
|
||||
Merge VAD segments into larger segments of size ~CHUNK_LENGTH.
|
||||
'''
|
||||
|
||||
def merge_chunks(segments, chunk_size=CHUNK_LENGTH):
|
||||
"""
|
||||
Merge VAD segments into larger segments of size ~CHUNK_LENGTH.
|
||||
"""
|
||||
curr_start = 0
|
||||
curr_end = 0
|
||||
merged_segments = []
|
||||
@ -508,7 +634,6 @@ def merge_chunks(segments, chunk_size=CHUNK_LENGTH, speakers=False):
|
||||
"start": curr_start,
|
||||
"end": curr_end,
|
||||
"segments": seg_idxs,
|
||||
"speakers": speaker_idxs,
|
||||
})
|
||||
curr_start = seg.start
|
||||
seg_idxs = []
|
||||
@ -521,55 +646,107 @@ def merge_chunks(segments, chunk_size=CHUNK_LENGTH, speakers=False):
|
||||
"start": curr_start,
|
||||
"end": curr_end,
|
||||
"segments": seg_idxs,
|
||||
"speakers": speaker_idxs
|
||||
})
|
||||
return merged_segments
|
||||
|
||||
|
||||
|
||||
def transcribe_segments(
|
||||
def transcribe_with_vad(
|
||||
model: "Whisper",
|
||||
audio: Union[str, np.ndarray, torch.Tensor],
|
||||
merged_segments,
|
||||
vad_pipeline,
|
||||
mel = None,
|
||||
verbose: Optional[bool] = None,
|
||||
**kwargs
|
||||
):
|
||||
'''
|
||||
Transcribe according to predefined VAD segments.
|
||||
'''
|
||||
"""
|
||||
Transcribe per VAD segment
|
||||
"""
|
||||
|
||||
if mel is None:
|
||||
mel = log_mel_spectrogram(audio)
|
||||
|
||||
prev = 0
|
||||
output = {"segments": []}
|
||||
|
||||
output = {'segments': []}
|
||||
vad_segments_list = []
|
||||
vad_segments = vad_pipeline(audio)
|
||||
for speech_turn in vad_segments.get_timeline().support():
|
||||
vad_segments_list.append(Segment(speech_turn.start, speech_turn.end, "UNKNOWN"))
|
||||
# merge segments to approx 30s inputs to make whisper most appropraite
|
||||
vad_segments = merge_chunks(vad_segments_list)
|
||||
|
||||
for sdx, seg_t in enumerate(merged_segments):
|
||||
print(sdx, seg_t['start'], seg_t['end'], '...')
|
||||
seg_f_start, seg_f_end = int(seg_t['start'] * SAMPLE_RATE / HOP_LENGTH), int(seg_t['end'] * SAMPLE_RATE / HOP_LENGTH)
|
||||
for sdx, seg_t in enumerate(vad_segments):
|
||||
if verbose:
|
||||
print(f"~~ Transcribing VAD chunk: ({format_timestamp(seg_t['start'])} --> {format_timestamp(seg_t['end'])}) ~~")
|
||||
seg_f_start, seg_f_end = int(seg_t["start"] * SAMPLE_RATE / HOP_LENGTH), int(seg_t["end"] * SAMPLE_RATE / HOP_LENGTH)
|
||||
local_f_start, local_f_end = seg_f_start - prev, seg_f_end - prev
|
||||
mel = mel[:, local_f_start:] # seek forward
|
||||
prev = seg_f_start
|
||||
local_mel = mel[:, :local_f_end-local_f_start]
|
||||
result = transcribe(model, audio, mel=local_mel, **kwargs)
|
||||
seg_t['text'] = result['text']
|
||||
output['segments'].append(
|
||||
result = transcribe(model, audio, mel=local_mel, verbose=verbose, **kwargs)
|
||||
seg_t["text"] = result["text"]
|
||||
output["segments"].append(
|
||||
{
|
||||
'start': seg_t['start'],
|
||||
'end': seg_t['end'],
|
||||
'language': result['language'],
|
||||
'text': result['text'],
|
||||
'seg-text': [x['text'] for x in result['segments']],
|
||||
'seg-start': [x['start'] for x in result['segments']],
|
||||
'seg-end': [x['end'] for x in result['segments']],
|
||||
"start": seg_t["start"],
|
||||
"end": seg_t["end"],
|
||||
"language": result["language"],
|
||||
"text": result["text"],
|
||||
"seg-text": [x["text"] for x in result["segments"]],
|
||||
"seg-start": [x["start"] for x in result["segments"]],
|
||||
"seg-end": [x["end"] for x in result["segments"]],
|
||||
}
|
||||
)
|
||||
|
||||
output['language'] = output['segments'][0]['language']
|
||||
output["language"] = output["segments"][0]["language"]
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def assign_word_speakers(diarize_df, result_segments, fill_nearest=False):
|
||||
|
||||
for seg in result_segments:
|
||||
wdf = pd.DataFrame(seg['word-segments'])
|
||||
if len(wdf['start'].dropna()) == 0:
|
||||
wdf['start'] = seg['start']
|
||||
wdf['end'] = seg['end']
|
||||
speakers = []
|
||||
for wdx, wrow in wdf.iterrows():
|
||||
diarize_df['intersection'] = np.minimum(diarize_df['end'], wrow['end']) - np.maximum(diarize_df['start'], wrow['start'])
|
||||
diarize_df['union'] = np.maximum(diarize_df['end'], wrow['end']) - np.minimum(diarize_df['start'], wrow['start'])
|
||||
# remove no hit
|
||||
if not fill_nearest:
|
||||
dia_tmp = diarize_df[diarize_df['intersection'] > 0]
|
||||
else:
|
||||
dia_tmp = diarize_df
|
||||
if len(dia_tmp) == 0:
|
||||
speaker = None
|
||||
else:
|
||||
speaker = dia_tmp.sort_values("intersection", ascending=False).iloc[0][2]
|
||||
speakers.append(speaker)
|
||||
seg['word-segments']['speaker'] = speakers
|
||||
seg["speaker"] = pd.Series(speakers).value_counts().index[0]
|
||||
|
||||
# create word level segments for .srt
|
||||
word_seg = []
|
||||
for seg in result_segments:
|
||||
wseg = pd.DataFrame(seg["word-segments"])
|
||||
for wdx, wrow in wseg.iterrows():
|
||||
if wrow["start"] is not None:
|
||||
speaker = wrow['speaker']
|
||||
if speaker is None or speaker == np.nan:
|
||||
speaker = "UNKNOWN"
|
||||
word_seg.append(
|
||||
{
|
||||
"start": wrow["start"],
|
||||
"end": wrow["end"],
|
||||
"text": f"[{speaker}]: " + seg["text"][int(wrow["segment-text-start"]):int(wrow["segment-text-end"])]
|
||||
}
|
||||
)
|
||||
|
||||
# TODO: create segments but split words on new speaker
|
||||
|
||||
return result_segments, word_seg
|
||||
|
||||
class Segment:
|
||||
def __init__(self, start, end, speaker=None):
|
||||
self.start = start
|
||||
@ -589,11 +766,17 @@ def cli():
|
||||
parser.add_argument("--align_model", default=None, help="Name of phoneme-level ASR model to do alignment")
|
||||
parser.add_argument("--align_extend", default=2, type=float, help="Seconds before and after to extend the whisper segments for alignment")
|
||||
parser.add_argument("--align_from_prev", default=True, type=bool, help="Whether to clip the alignment start time of current segment to the end time of the last aligned word of the previous segment")
|
||||
parser.add_argument("--drop_non_aligned", action="store_true", help="For word .srt, whether to drop non aliged words, or merge them into neighbouring.")
|
||||
parser.add_argument("--vad_filter", action="store_true", help="Whether to first perform VAD filtering to target only transcribe within VAD...")
|
||||
parser.add_argument("--interpolate_method", default="nearest", choices=["nearest", "linear", "ignore"], help="For word .srt, method to assign timestamps to non-aligned words, or merge them into neighbouring.")
|
||||
# vad params
|
||||
parser.add_argument("--vad_filter", action="store_true", help="Whether to first perform VAD filtering to target only transcribe within VAD. Produces more accurate alignment + timestamp, requires more GPU memory & compute.")
|
||||
parser.add_argument("--vad_input", default=None, type=str)
|
||||
# diarization params
|
||||
parser.add_argument("--diarize", action='store_true')
|
||||
parser.add_argument("--min_speakers", default=None, type=int)
|
||||
parser.add_argument("--max_speakers", default=None, type=int)
|
||||
# output save params
|
||||
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
||||
parser.add_argument("--output_type", default="srt", choices=['all', 'srt', 'vtt', 'txt'], help="File type for desired output save")
|
||||
parser.add_argument("--output_type", default="all", choices=["all", "srt", "srt-word", "vtt", "txt", "tsv", "ass", "ass-char"], help="File type for desired output save")
|
||||
|
||||
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
||||
|
||||
@ -627,24 +810,32 @@ def cli():
|
||||
align_model: str = args.pop("align_model")
|
||||
align_extend: float = args.pop("align_extend")
|
||||
align_from_prev: bool = args.pop("align_from_prev")
|
||||
drop_non_aligned: bool = args.pop("drop_non_aligned")
|
||||
interpolate_method: bool = args.pop("interpolate_method")
|
||||
|
||||
vad_filter: bool = args.pop("vad_filter")
|
||||
vad_input: bool = args.pop("vad_input")
|
||||
|
||||
diarize: bool = args.pop("diarize")
|
||||
min_speakers: int = args.pop("min_speakers")
|
||||
max_speakers: int = args.pop("max_speakers")
|
||||
|
||||
vad_pipeline = None
|
||||
if vad_input is not None:
|
||||
vad_input = pd.read_csv(vad_input, header=None, sep= " ")
|
||||
elif vad_filter:
|
||||
from pyannote.audio import Pipeline
|
||||
vad_pipeline = Pipeline.from_pretrained("pyannote/voice-activity-detection")
|
||||
# vad_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1")
|
||||
|
||||
diarize_pipeline = None
|
||||
if diarize:
|
||||
from pyannote.audio import Pipeline
|
||||
diarize_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1")
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
|
||||
if args["language"] is not None:
|
||||
warnings.warn(f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead.")
|
||||
warnings.warn(f'{model_name} is an English-only model but receipted "{args["language"]}"; using English instead.')
|
||||
args["language"] = "en"
|
||||
|
||||
temperature = args.pop("temperature")
|
||||
@ -665,24 +856,10 @@ def cli():
|
||||
align_model, align_metadata = load_align_model(align_language, device, model_name=align_model)
|
||||
|
||||
for audio_path in args.pop("audio"):
|
||||
if vad_filter or vad_input is not None:
|
||||
output_segments = []
|
||||
if vad_filter:
|
||||
print("Performing VAD...")
|
||||
# vad_segments = vad_pipeline(audio_path)
|
||||
# for speech_turn, track, speaker in vad_segments.itertracks(yield_label=True):
|
||||
# output_segments.append(Segment(speech_turn.start, speech_turn.end, speaker))
|
||||
vad_segments = vad_pipeline(audio_path)
|
||||
for speech_turn in vad_segments.get_timeline().support():
|
||||
output_segments.append(Segment(speech_turn.start, speech_turn.end, "UNKNOWN"))
|
||||
elif vad_input is not None:
|
||||
# rttm format
|
||||
for idx, row in vad_input.iterrows():
|
||||
output_segments.append(Segment(row[3], row[3]+row[4], f"SPEAKER {row[7]}"))
|
||||
vad_segments = merge_chunks(output_segments)
|
||||
result = transcribe_segments(model, audio_path, merged_segments=vad_segments, temperature=temperature, **args)
|
||||
result = transcribe_with_vad(model, audio_path, vad_pipeline, temperature=temperature, **args)
|
||||
else:
|
||||
vad_segments = None
|
||||
print("Performing transcription...")
|
||||
result = transcribe(model, audio_path, temperature=temperature, **args)
|
||||
|
||||
@ -693,9 +870,20 @@ def cli():
|
||||
|
||||
print("Performing alignment...")
|
||||
result_aligned = align(result["segments"], align_model, align_metadata, audio_path, device,
|
||||
extend_duration=align_extend, start_from_previous=align_from_prev, drop_non_aligned_words=drop_non_aligned)
|
||||
extend_duration=align_extend, start_from_previous=align_from_prev, interpolate_method=interpolate_method)
|
||||
audio_basename = os.path.basename(audio_path)
|
||||
|
||||
if diarize:
|
||||
print("Performing diarization...")
|
||||
diarize_segments = diarize_pipeline(audio_path, min_speakers=min_speakers, max_speakers=max_speakers)
|
||||
diarize_df = pd.DataFrame(diarize_segments.itertracks(yield_label=True))
|
||||
diarize_df['start'] = diarize_df[0].apply(lambda x: x.start)
|
||||
diarize_df['end'] = diarize_df[0].apply(lambda x: x.end)
|
||||
# assumes each utterance is single speaker (needs fix)
|
||||
result_segments, word_segments = assign_word_speakers(diarize_df, result_aligned["segments"], fill_nearest=True)
|
||||
result_aligned["segments"] = result_segments
|
||||
result_aligned["word_segments"] = word_segments
|
||||
|
||||
# save TXT
|
||||
if output_type in ["txt", "all"]:
|
||||
with open(os.path.join(output_dir, audio_basename + ".txt"), "w", encoding="utf-8") as txt:
|
||||
@ -711,19 +899,27 @@ def cli():
|
||||
with open(os.path.join(output_dir, audio_basename + ".srt"), "w", encoding="utf-8") as srt:
|
||||
write_srt(result_aligned["segments"], file=srt)
|
||||
|
||||
# save TSV
|
||||
if output_type in ["tsv", "all"]:
|
||||
with open(os.path.join(output_dir, audio_basename + ".srt"), "w", encoding="utf-8") as srt:
|
||||
write_tsv(result_aligned["segments"], file=srt)
|
||||
|
||||
# save SRT word-level
|
||||
if output_type in ["srt-word", "all"]:
|
||||
# save per-word SRT
|
||||
with open(os.path.join(output_dir, audio_basename + ".word.srt"), "w", encoding="utf-8") as srt:
|
||||
write_srt(result_aligned["word_segments"], file=srt)
|
||||
|
||||
# save ASS
|
||||
if output_type in ["ass", "all"]:
|
||||
with open(os.path.join(output_dir, audio_basename + ".ass"), "w", encoding="utf-8") as ass:
|
||||
write_ass(result_aligned["segments"], file=ass)
|
||||
|
||||
if vad_filter is not None:
|
||||
# save per-word SRT
|
||||
with open(os.path.join(output_dir, audio_basename + ".vad.srt"), "w", encoding="utf-8") as srt:
|
||||
write_srt(result_aligned["vad_segments"], file=srt)
|
||||
# save ASS character-level
|
||||
if output_type in ["ass-char", "all"]:
|
||||
with open(os.path.join(output_dir, audio_basename + ".char.ass"), "w", encoding="utf-8") as ass:
|
||||
write_ass(result_aligned["segments"], file=ass, resolution="char")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
cli()
|
||||
|
@ -1,6 +1,7 @@
|
||||
import os
|
||||
import zlib
|
||||
from typing import Iterator, TextIO, Tuple, List
|
||||
|
||||
from typing import Callable, TextIO, Iterator, Tuple
|
||||
import pandas as pd
|
||||
|
||||
def exact_div(x, y):
|
||||
assert x % y == 0
|
||||
@ -60,6 +61,13 @@ def write_vtt(transcript: Iterator[dict], file: TextIO):
|
||||
flush=True,
|
||||
)
|
||||
|
||||
def write_tsv(transcript: Iterator[dict], file: TextIO):
|
||||
print("start", "end", "text", sep="\t", file=file)
|
||||
for segment in transcript:
|
||||
print(round(1000 * segment['start']), file=file, end="\t")
|
||||
print(round(1000 * segment['end']), file=file, end="\t")
|
||||
print(segment['text'].strip().replace("\t", " "), file=file, flush=True)
|
||||
|
||||
|
||||
def write_srt(transcript: Iterator[dict], file: TextIO):
|
||||
"""
|
||||
@ -88,7 +96,9 @@ def write_srt(transcript: Iterator[dict], file: TextIO):
|
||||
)
|
||||
|
||||
|
||||
def write_ass(transcript: Iterator[dict], file: TextIO,
|
||||
def write_ass(transcript: Iterator[dict],
|
||||
file: TextIO,
|
||||
resolution: str = "word",
|
||||
color: str = None, underline=True,
|
||||
prefmt: str = None, suffmt: str = None,
|
||||
font: str = None, font_size: int = 24,
|
||||
@ -102,10 +112,12 @@ def write_ass(transcript: Iterator[dict], file: TextIO,
|
||||
Note: ass file is used in the same way as srt, vtt, etc.
|
||||
Parameters
|
||||
----------
|
||||
res: dict
|
||||
transcript: dict
|
||||
results from modified model
|
||||
ass_path: str
|
||||
output path (e.g. caption.ass)
|
||||
file: TextIO
|
||||
file object to write to
|
||||
resolution: str
|
||||
"word" or "char", timestamp resolution to highlight.
|
||||
color: str
|
||||
color code for a word at its corresponding timestamp
|
||||
<bbggrr> reverse order hexadecimal RGB value (e.g. FF0000 is full intensity blue. Default: 00FF00)
|
||||
@ -176,49 +188,67 @@ def write_ass(transcript: Iterator[dict], file: TextIO,
|
||||
return f'{hh:0>1.0f}:{mm:0>2.0f}:{ss:0>2.2f}'
|
||||
|
||||
|
||||
def dialogue(words: List[str], idx, start, end) -> str:
|
||||
text = ''.join(f' {prefmt}{word}{suffmt}'
|
||||
# if not word.startswith(' ') or word == ' ' else
|
||||
# f' {prefmt}{word.strip()}{suffmt}')
|
||||
if curr_idx == idx else
|
||||
f' {word}'
|
||||
for curr_idx, word in enumerate(words))
|
||||
def dialogue(chars: str, start: float, end: float, idx_0: int, idx_1: int) -> str:
|
||||
if idx_0 == -1:
|
||||
text = chars
|
||||
else:
|
||||
text = f'{chars[:idx_0]}{prefmt}{chars[idx_0:idx_1]}{suffmt}{chars[idx_1:]}'
|
||||
return f"Dialogue: 0,{secs_to_hhmmss(start)},{secs_to_hhmmss(end)}," \
|
||||
f"Default,,0,0,0,,{text.strip() if strip else text}"
|
||||
|
||||
if resolution == "word":
|
||||
resolution_key = "word-segments"
|
||||
elif resolution == "char":
|
||||
resolution_key = "char-segments"
|
||||
else:
|
||||
raise ValueError(".ass resolution should be 'word' or 'char', not ", resolution)
|
||||
|
||||
ass_arr = []
|
||||
|
||||
for segment in transcript:
|
||||
curr_words = [wrd['text'] for wrd in segment['word-level']]
|
||||
prev = segment['word-level'][0]['start']
|
||||
if prev is None:
|
||||
if resolution_key in segment:
|
||||
res_segs = pd.DataFrame(segment[resolution_key])
|
||||
prev = segment['start']
|
||||
for wdx, word in enumerate(segment['word-level']):
|
||||
if word['start'] is not None:
|
||||
# fill gap between previous word
|
||||
if word['start'] > prev:
|
||||
if "speaker" in segment:
|
||||
speaker_str = f"[{segment['speaker']}]: "
|
||||
else:
|
||||
speaker_str = ""
|
||||
for cdx, crow in res_segs.iterrows():
|
||||
if crow['start'] is not None:
|
||||
if resolution == "char":
|
||||
idx_0 = cdx
|
||||
idx_1 = cdx + 1
|
||||
elif resolution == "word":
|
||||
idx_0 = int(crow["segment-text-start"])
|
||||
idx_1 = int(crow["segment-text-end"])
|
||||
# fill gap
|
||||
if crow['start'] > prev:
|
||||
filler_ts = {
|
||||
"words": curr_words,
|
||||
"chars": speaker_str + segment['text'],
|
||||
"start": prev,
|
||||
"end": word['start'],
|
||||
"idx": -1
|
||||
"end": crow['start'],
|
||||
"idx_0": -1,
|
||||
"idx_1": -1
|
||||
}
|
||||
ass_arr.append(filler_ts)
|
||||
|
||||
ass_arr.append(filler_ts)
|
||||
# highlight current word
|
||||
f_word_ts = {
|
||||
"words": curr_words,
|
||||
"start": word['start'],
|
||||
"end": word['end'],
|
||||
"idx": wdx
|
||||
"chars": speaker_str + segment['text'],
|
||||
"start": crow['start'],
|
||||
"end": crow['end'],
|
||||
"idx_0": idx_0 + len(speaker_str),
|
||||
"idx_1": idx_1 + len(speaker_str)
|
||||
}
|
||||
ass_arr.append(f_word_ts)
|
||||
|
||||
prev = word['end']
|
||||
|
||||
|
||||
prev = crow['end']
|
||||
|
||||
ass_str += '\n'.join(map(lambda x: dialogue(**x), ass_arr))
|
||||
|
||||
file.write(ass_str)
|
||||
|
||||
def interpolate_nans(x, method='nearest'):
|
||||
if x.notnull().sum() > 1:
|
||||
return x.interpolate(method=method).ffill().bfill()
|
||||
else:
|
||||
return x.ffill().bfill()
|
Reference in New Issue
Block a user