From cbaeb85034d2391027a348c67a148761f6109ea3 Mon Sep 17 00:00:00 2001
From: Max Bain
Date: Mon, 19 Dec 2022 19:41:39 +0000
Subject: [PATCH] restructure readme,
---
README.md | 50 +++++++++++++++++++++++-------------------
whisperx/transcribe.py | 2 +-
2 files changed, 29 insertions(+), 23 deletions(-)
diff --git a/README.md b/README.md
index 482288c..571761b 100644
--- a/README.md
+++ b/README.md
@@ -4,8 +4,8 @@
-
-
+
@@ -17,6 +17,15 @@
+
+ What is it โข
+ Setup โข
+ Example usage
+
+
+
+
+
@@ -25,9 +34,9 @@
-What is it ๐
+What is it ๐
-This repository refines the timestamps of openAI's Whisper model via forced aligment with phoneme-based ASR models (e.g. wav2vec2.0)
+This repository refines the timestamps of openAI's Whisper model via forced aligment with phoneme-based ASR models (e.g. wav2vec2.0), multilingual use-case.
**Whisper** is an ASR model [developed by OpenAI](https://github.com/openai/whisper), trained on a large dataset of diverse audio. Whilst it does produces highly accurate transcriptions, the corresponding timestamps are at the utterance-level, not per word, and can be inaccurate by several seconds.
@@ -36,25 +45,25 @@ This repository refines the timestamps of openAI's Whisper model via forced alig
**Forced Alignment** refers to the process by which orthographic transcriptions are aligned to audio recordings to automatically generate phone level segmentation.
-
-
-
-Setup โ๏ธ
+Setup โ๏ธ
Install this package using
`pip install git+https://github.com/m-bain/whisperx.git`
You may also need to install ffmpeg, rust etc. Follow openAI instructions here https://github.com/openai/whisper#setup.
-Examples๐ฌ
+Example usage๐ฌ
+
### English
+
Run whisper on example segment (using default params)
-`whisperx examples/sample01.wav --model medium.en --output examples/whisperx --align_model WAV2VEC2_ASR_BASE_960H --align_extend 2`
+ whisperx examples/sample01.wav
+
For increased timestamp accuracy, at the cost of higher gpu mem, use a bigger alignment model e.g.
-`WAV2VEC2_ASR_LARGE_LV60K_960H` or `HUBERT_ASR_XLARGE`
+ whisperx examples/sample01.wav --model medium.en --align_model WAV2VEC2_ASR_LARGE_LV60K_960H --output_dir examples/whisperx
Result using *WhisperX* with forced alignment to wav2vec2.0 large:
@@ -69,7 +78,7 @@ https://user-images.githubusercontent.com/36994049/207743923-b4f0d537-29ae-4be2-
For non-english ASR, it is best to use the `large` whisper model.
### French
-`whisperx --model large --language fr examples/sample_fr_01.wav --align_model VOXPOPULI_ASR_BASE_10K_FR --output_dir examples/whisperx/ --align_extend 2`
+ whisperx examples/sample_fr_01.wav --model large --language fr --align_model VOXPOPULI_ASR_BASE_10K_FR --output_dir examples/whisperx
https://user-images.githubusercontent.com/36994049/208298804-31c49d6f-6787-444e-a53f-e93c52706752.mov
@@ -77,8 +86,7 @@ https://user-images.githubusercontent.com/36994049/208298804-31c49d6f-6787-444e-
### German
-`whisperx --model large --language de examples/sample_de_01.wav --align_model VOXPOPULI_ASR_BASE_10K_DE --output_dir examples/whisperx/ --align_extend 2`
-
+ whisperx examples/sample_de_01.wav --model large --language de --align_model VOXPOPULI_ASR_BASE_10K_DE --output_dir examples/whisperx
https://user-images.githubusercontent.com/36994049/208298811-e36002ba-3698-4731-97d4-0aebd07e0eb3.mov
@@ -87,22 +95,21 @@ https://user-images.githubusercontent.com/36994049/208298811-e36002ba-3698-4731-
### Italian
-`whisperx --model large --language it examples/sample_it_01.wav --align_model VOXPOPULI_ASR_BASE_10K_IT --output_dir examples/whisperx/ --align_extend 2`
+ whisperx examples/sample_it_01.wav --model large --language it --align_model VOXPOPULI_ASR_BASE_10K_IT --output_dir examples/whisperx
https://user-images.githubusercontent.com/36994049/208298819-6f462b2c-8cae-4c54-b8e1-90855794efc7.mov
-
-Limitations โ ๏ธ
+Limitations โ ๏ธ
- Not thoroughly tested, especially for non-english, results may vary -- please post issue to let me know the results on your data
- Whisper normalises spoken numbers e.g. "fifty seven" to arabic numerals "57". Need to perform this normalization after alignment, so the phonemes can be aligned. Currently just ignores numbers.
- Assumes the initial whisper timestamps are accurate to some degree (within margin of 2 seconds, adjust if needed -- bigger margins more prone to alignment errors)
- Hacked this up quite quickly, there might be some errors, please raise an issue if you encounter any.
-Coming Soon ๐
+Coming Soon ๐
[x] Multilingual init
@@ -110,24 +117,23 @@ https://user-images.githubusercontent.com/36994049/208298819-6f462b2c-8cae-4c54-
[ ] Automatic align model selection based on language detection
-[ ] Option to minimise gpu load (chunk wav2vec)
[ ] Incorporating word-level speaker diarization
[ ] Inference speedup with batch processing
-Contact
+
Contact maxbain[at]robots[dot]ox[dot]ac[dot]uk if using this commerically.
-Acknowledgements ๐
+Acknowledgements ๐
Of course, this is mostly just a modification to [openAI's whisper](https://github.com/openai/whisper).
As well as accreditation to this [PyTorch tutorial on forced alignment](https://pytorch.org/tutorials/intermediate/forced_alignment_with_torchaudio_tutorial.html)
-Citation
+Citation
If you use this in your research, just cite the repo,
```bibtex
diff --git a/whisperx/transcribe.py b/whisperx/transcribe.py
index 174cdbd..a4fc279 100644
--- a/whisperx/transcribe.py
+++ b/whisperx/transcribe.py
@@ -26,7 +26,7 @@ def transcribe(
compression_ratio_threshold: Optional[float] = 2.4,
logprob_threshold: Optional[float] = -1.0,
no_speech_threshold: Optional[float] = 0.6,
- condition_on_previous_text: bool = True,
+ condition_on_previous_text: bool = False, # turn off by default due to errors it causes
**decode_options,
):
"""