feat: add diarize_model arg to CLI (#1101)

This commit is contained in:
bog
2025-05-31 13:32:31 +02:00
committed by GitHub
parent 6fe0a8784a
commit b343241253
3 changed files with 7 additions and 3 deletions

View File

@ -43,6 +43,7 @@ def cli():
parser.add_argument("--diarize", action="store_true", help="Apply diarization to assign speaker labels to each segment/word")
parser.add_argument("--min_speakers", default=None, type=int, help="Minimum number of speakers to in audio file")
parser.add_argument("--max_speakers", default=None, type=int, help="Maximum number of speakers to in audio file")
parser.add_argument("--diarize_model", default="pyannote/speaker-diarization-3.1", type=str, help="Name of the speaker diarization model to use")
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")

View File

@ -11,13 +11,14 @@ from whisperx.types import TranscriptionResult, AlignedTranscriptionResult
class DiarizationPipeline:
def __init__(
self,
model_name="pyannote/speaker-diarization-3.1",
model_name=None,
use_auth_token=None,
device: Optional[Union[str, torch.device]] = "cpu",
):
if isinstance(device, str):
device = torch.device(device)
self.model = Pipeline.from_pretrained(model_name, use_auth_token=use_auth_token).to(device)
model_config = model_name or "pyannote/speaker-diarization-3.1"
self.model = Pipeline.from_pretrained(model_config, use_auth_token=use_auth_token).to(device)
def __call__(
self,

View File

@ -57,6 +57,7 @@ def transcribe_task(args: dict, parser: argparse.ArgumentParser):
diarize: bool = args.pop("diarize")
min_speakers: int = args.pop("min_speakers")
max_speakers: int = args.pop("max_speakers")
diarize_model_name: str = args.pop("diarize_model")
print_progress: bool = args.pop("print_progress")
if args["language"] is not None:
@ -204,8 +205,9 @@ def transcribe_task(args: dict, parser: argparse.ArgumentParser):
)
tmp_results = results
print(">>Performing diarization...")
print(">>Using model:", diarize_model_name)
results = []
diarize_model = DiarizationPipeline(use_auth_token=hf_token, device=device)
diarize_model = DiarizationPipeline(model_name=diarize_model_name, use_auth_token=hf_token, device=device)
for result, input_audio_path in tmp_results:
diarize_segments = diarize_model(
input_audio_path, min_speakers=min_speakers, max_speakers=max_speakers