mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
refactor: add type hints
This commit is contained in:
@ -3,7 +3,7 @@ Forced Alignment with Whisper
|
||||
C. Max Bain
|
||||
"""
|
||||
from dataclasses import dataclass
|
||||
from typing import Iterable, Union, List
|
||||
from typing import Iterable, Optional, Union, List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -65,7 +65,7 @@ DEFAULT_ALIGN_MODELS_HF = {
|
||||
}
|
||||
|
||||
|
||||
def load_align_model(language_code, device, model_name=None, model_dir=None):
|
||||
def load_align_model(language_code: str, device: str, model_name: Optional[str] = None, model_dir=None):
|
||||
if model_name is None:
|
||||
# use default model
|
||||
if language_code in DEFAULT_ALIGN_MODELS_TORCH:
|
||||
|
105
whisperx/asr.py
105
whisperx/asr.py
@ -1,20 +1,20 @@
|
||||
import os
|
||||
import warnings
|
||||
from typing import List, Union, Optional, NamedTuple
|
||||
from typing import List, NamedTuple, Optional, Union
|
||||
|
||||
import ctranslate2
|
||||
import faster_whisper
|
||||
import numpy as np
|
||||
import torch
|
||||
from faster_whisper.tokenizer import Tokenizer
|
||||
from faster_whisper.transcribe import (TranscriptionOptions,
|
||||
get_ctranslate2_storage)
|
||||
from faster_whisper.transcribe import TranscriptionOptions, get_ctranslate2_storage
|
||||
from transformers import Pipeline
|
||||
from transformers.pipelines.pt_utils import PipelineIterator
|
||||
|
||||
from .audio import N_SAMPLES, SAMPLE_RATE, load_audio, log_mel_spectrogram
|
||||
from .vad import load_vad_model, merge_chunks
|
||||
from .types import TranscriptionResult, SingleSegment
|
||||
from .types import SingleSegment, TranscriptionResult
|
||||
from .vad import VoiceActivitySegmentation, load_vad_model, merge_chunks
|
||||
|
||||
|
||||
def find_numeral_symbol_tokens(tokenizer):
|
||||
numeral_symbol_tokens = []
|
||||
@ -103,17 +103,17 @@ class FasterWhisperPipeline(Pipeline):
|
||||
# - add support for custom inference kwargs
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
vad,
|
||||
vad_params: dict,
|
||||
options : NamedTuple,
|
||||
tokenizer=None,
|
||||
device: Union[int, str, "torch.device"] = -1,
|
||||
framework = "pt",
|
||||
language : Optional[str] = None,
|
||||
suppress_numerals: bool = False,
|
||||
**kwargs
|
||||
self,
|
||||
model: WhisperModel,
|
||||
vad: VoiceActivitySegmentation,
|
||||
vad_params: dict,
|
||||
options: NamedTuple,
|
||||
tokenizer: Optional[Tokenizer] = None,
|
||||
device: Union[int, str, "torch.device"] = -1,
|
||||
framework="pt",
|
||||
language: Optional[str] = None,
|
||||
suppress_numerals: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
@ -165,7 +165,13 @@ class FasterWhisperPipeline(Pipeline):
|
||||
return model_outputs
|
||||
|
||||
def get_iterator(
|
||||
self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
|
||||
self,
|
||||
inputs,
|
||||
num_workers: int,
|
||||
batch_size: int,
|
||||
preprocess_params: dict,
|
||||
forward_params: dict,
|
||||
postprocess_params: dict,
|
||||
):
|
||||
dataset = PipelineIterator(inputs, self.preprocess, preprocess_params)
|
||||
if "TOKENIZERS_PARALLELISM" not in os.environ:
|
||||
@ -180,7 +186,16 @@ class FasterWhisperPipeline(Pipeline):
|
||||
return final_iterator
|
||||
|
||||
def transcribe(
|
||||
self, audio: Union[str, np.ndarray], batch_size=None, num_workers=0, language=None, task=None, chunk_size=30, print_progress = False, combined_progress=False, verbose=False
|
||||
self,
|
||||
audio: Union[str, np.ndarray],
|
||||
batch_size: Optional[int] = None,
|
||||
num_workers=0,
|
||||
language: Optional[str] = None,
|
||||
task: Optional[str] = None,
|
||||
chunk_size=30,
|
||||
print_progress=False,
|
||||
combined_progress=False,
|
||||
verbose=False,
|
||||
) -> TranscriptionResult:
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
@ -258,8 +273,7 @@ class FasterWhisperPipeline(Pipeline):
|
||||
|
||||
return {"segments": segments, "language": language}
|
||||
|
||||
|
||||
def detect_language(self, audio: np.ndarray):
|
||||
def detect_language(self, audio: np.ndarray) -> str:
|
||||
if audio.shape[0] < N_SAMPLES:
|
||||
print("Warning: audio is shorter than 30s, language detection may be inaccurate.")
|
||||
model_n_mels = self.model.feat_kwargs.get("feature_size")
|
||||
@ -273,33 +287,36 @@ class FasterWhisperPipeline(Pipeline):
|
||||
print(f"Detected language: {language} ({language_probability:.2f}) in first 30s of audio...")
|
||||
return language
|
||||
|
||||
def load_model(whisper_arch,
|
||||
device,
|
||||
device_index=0,
|
||||
compute_type="float16",
|
||||
asr_options=None,
|
||||
language : Optional[str] = None,
|
||||
vad_model=None,
|
||||
vad_options=None,
|
||||
model : Optional[WhisperModel] = None,
|
||||
task="transcribe",
|
||||
download_root=None,
|
||||
local_files_only=False,
|
||||
threads=4):
|
||||
'''Load a Whisper model for inference.
|
||||
|
||||
def load_model(
|
||||
whisper_arch: str,
|
||||
device: str,
|
||||
device_index=0,
|
||||
compute_type="float16",
|
||||
asr_options: Optional[dict] = None,
|
||||
language: Optional[str] = None,
|
||||
vad_model: Optional[VoiceActivitySegmentation] = None,
|
||||
vad_options: Optional[dict] = None,
|
||||
model: Optional[WhisperModel] = None,
|
||||
task="transcribe",
|
||||
download_root: Optional[str] = None,
|
||||
local_files_only=False,
|
||||
threads=4,
|
||||
) -> FasterWhisperPipeline:
|
||||
"""Load a Whisper model for inference.
|
||||
Args:
|
||||
whisper_arch: str - The name of the Whisper model to load.
|
||||
device: str - The device to load the model on.
|
||||
compute_type: str - The compute type to use for the model.
|
||||
options: dict - A dictionary of options to use for the model.
|
||||
language: str - The language of the model. (use English for now)
|
||||
model: Optional[WhisperModel] - The WhisperModel instance to use.
|
||||
download_root: Optional[str] - The root directory to download the model to.
|
||||
local_files_only: bool - If `True`, avoid downloading the file and return the path to the local cached file if it exists.
|
||||
threads: int - The number of cpu threads to use per worker, e.g. will be multiplied by num workers.
|
||||
whisper_arch - The name of the Whisper model to load.
|
||||
device - The device to load the model on.
|
||||
compute_type - The compute type to use for the model.
|
||||
options - A dictionary of options to use for the model.
|
||||
language - The language of the model. (use English for now)
|
||||
model - The WhisperModel instance to use.
|
||||
download_root - The root directory to download the model to.
|
||||
local_files_only - If `True`, avoid downloading the file and return the path to the local cached file if it exists.
|
||||
threads - The number of cpu threads to use per worker, e.g. will be multiplied by num workers.
|
||||
Returns:
|
||||
A Whisper pipeline.
|
||||
'''
|
||||
"""
|
||||
|
||||
if whisper_arch.endswith(".en"):
|
||||
language = "en"
|
||||
|
@ -22,7 +22,7 @@ FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
||||
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
||||
|
||||
|
||||
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||
def load_audio(file: str, sr: int = SAMPLE_RATE) -> np.ndarray:
|
||||
"""
|
||||
Open an audio file and read as mono waveform, resampling as necessary
|
||||
|
||||
|
@ -1,5 +1,8 @@
|
||||
# conjunctions.py
|
||||
|
||||
from typing import Set
|
||||
|
||||
|
||||
conjunctions_by_language = {
|
||||
'en': {'and', 'whether', 'or', 'as', 'but', 'so', 'for', 'nor', 'which', 'yet', 'although', 'since', 'unless', 'when', 'while', 'because', 'if', 'how', 'that', 'than', 'who', 'where', 'what', 'near', 'before', 'after', 'across', 'through', 'until', 'once', 'whereas', 'even', 'both', 'either', 'neither', 'though'},
|
||||
'fr': {'et', 'ou', 'mais', 'parce', 'bien', 'pendant', 'quand', 'où', 'comme', 'si', 'que', 'avant', 'après', 'aussitôt', 'jusqu’à', 'à', 'malgré', 'donc', 'tant', 'puisque', 'ni', 'soit', 'bien', 'encore', 'dès', 'lorsque'},
|
||||
@ -36,8 +39,9 @@ commas_by_language = {
|
||||
'ur': '،'
|
||||
}
|
||||
|
||||
def get_conjunctions(lang_code):
|
||||
def get_conjunctions(lang_code: str) -> Set[str]:
|
||||
return conjunctions_by_language.get(lang_code, set())
|
||||
|
||||
def get_comma(lang_code):
|
||||
return commas_by_language.get(lang_code, ',')
|
||||
|
||||
def get_comma(lang_code: str) -> str:
|
||||
return commas_by_language.get(lang_code, ",")
|
||||
|
@ -5,6 +5,7 @@ from typing import Optional, Union
|
||||
import torch
|
||||
|
||||
from .audio import load_audio, SAMPLE_RATE
|
||||
from .types import TranscriptionResult, AlignedTranscriptionResult
|
||||
|
||||
|
||||
class DiarizationPipeline:
|
||||
@ -18,7 +19,13 @@ class DiarizationPipeline:
|
||||
device = torch.device(device)
|
||||
self.model = Pipeline.from_pretrained(model_name, use_auth_token=use_auth_token).to(device)
|
||||
|
||||
def __call__(self, audio: Union[str, np.ndarray], num_speakers=None, min_speakers=None, max_speakers=None):
|
||||
def __call__(
|
||||
self,
|
||||
audio: Union[str, np.ndarray],
|
||||
num_speakers: Optional[int] = None,
|
||||
min_speakers: Optional[int] = None,
|
||||
max_speakers: Optional[int] = None,
|
||||
):
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
audio_data = {
|
||||
@ -32,7 +39,11 @@ class DiarizationPipeline:
|
||||
return diarize_df
|
||||
|
||||
|
||||
def assign_word_speakers(diarize_df, transcript_result, fill_nearest=False):
|
||||
def assign_word_speakers(
|
||||
diarize_df: pd.DataFrame,
|
||||
transcript_result: Union[AlignedTranscriptionResult, TranscriptionResult],
|
||||
fill_nearest=False,
|
||||
) -> dict:
|
||||
transcript_segments = transcript_result["segments"]
|
||||
for seg in transcript_segments:
|
||||
# assign speaker to segment (if any)
|
||||
|
@ -10,8 +10,15 @@ from .alignment import align, load_align_model
|
||||
from .asr import load_model
|
||||
from .audio import load_audio
|
||||
from .diarize import DiarizationPipeline, assign_word_speakers
|
||||
from .utils import (LANGUAGES, TO_LANGUAGE_CODE, get_writer, optional_float,
|
||||
optional_int, str2bool)
|
||||
from .types import AlignedTranscriptionResult, TranscriptionResult
|
||||
from .utils import (
|
||||
LANGUAGES,
|
||||
TO_LANGUAGE_CODE,
|
||||
get_writer,
|
||||
optional_float,
|
||||
optional_int,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def cli():
|
||||
@ -95,7 +102,7 @@ def cli():
|
||||
align_model: str = args.pop("align_model")
|
||||
interpolate_method: str = args.pop("interpolate_method")
|
||||
no_align: bool = args.pop("no_align")
|
||||
task : str = args.pop("task")
|
||||
task: str = args.pop("task")
|
||||
if task == "translate":
|
||||
# translation cannot be aligned
|
||||
no_align = True
|
||||
@ -174,7 +181,13 @@ def cli():
|
||||
audio = load_audio(audio_path)
|
||||
# >> VAD & ASR
|
||||
print(">>Performing transcription...")
|
||||
result = model.transcribe(audio, batch_size=batch_size, chunk_size=chunk_size, print_progress=print_progress, verbose=verbose)
|
||||
result: TranscriptionResult = model.transcribe(
|
||||
audio,
|
||||
batch_size=batch_size,
|
||||
chunk_size=chunk_size,
|
||||
print_progress=print_progress,
|
||||
verbose=verbose,
|
||||
)
|
||||
results.append((result, audio_path))
|
||||
|
||||
# Unload Whisper and VAD
|
||||
@ -201,7 +214,16 @@ def cli():
|
||||
print(f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language...")
|
||||
align_model, align_metadata = load_align_model(result["language"], device)
|
||||
print(">>Performing alignment...")
|
||||
result = align(result["segments"], align_model, align_metadata, input_audio, device, interpolate_method=interpolate_method, return_char_alignments=return_char_alignments, print_progress=print_progress)
|
||||
result: AlignedTranscriptionResult = align(
|
||||
result["segments"],
|
||||
align_model,
|
||||
align_metadata,
|
||||
input_audio,
|
||||
device,
|
||||
interpolate_method=interpolate_method,
|
||||
return_char_alignments=return_char_alignments,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
|
||||
results.append((result, audio_path))
|
||||
|
||||
|
Reference in New Issue
Block a user