style: minor code formatting

This commit is contained in:
Barabazs
2025-06-24 12:58:40 +00:00
parent 220fec9aea
commit 844736e4e4

View File

@ -30,16 +30,16 @@ class DiarizationPipeline:
) -> Union[tuple[pd.DataFrame, Optional[dict[str, list[float]]]], pd.DataFrame]:
"""
Perform speaker diarization on audio.
Args:
audio: Path to audio file or audio array
num_speakers: Exact number of speakers (if known)
min_speakers: Minimum number of speakers to detect
max_speakers: Maximum number of speakers to detect
return_embeddings: Whether to return speaker embeddings
Returns:
If return_embeddings is True:
If return_embeddings is True:
Tuple of (diarization dataframe, speaker embeddings dictionary)
Otherwise:
Just the diarization dataframe
@ -53,18 +53,18 @@ class DiarizationPipeline:
if return_embeddings:
diarization, embeddings = self.model(
audio_data,
audio_data,
num_speakers=num_speakers,
min_speakers=min_speakers,
max_speakers=max_speakers,
return_embeddings=True
min_speakers=min_speakers,
max_speakers=max_speakers,
return_embeddings=True,
)
else:
diarization = self.model(
audio_data,
audio_data,
num_speakers=num_speakers,
min_speakers=min_speakers,
max_speakers=max_speakers
min_speakers=min_speakers,
max_speakers=max_speakers,
)
embeddings = None
@ -91,13 +91,13 @@ def assign_word_speakers(
) -> Union[AlignedTranscriptionResult, TranscriptionResult]:
"""
Assign speakers to words and segments in the transcript.
Args:
diarize_df: Diarization dataframe from DiarizationPipeline
transcript_result: Transcription result to augment with speaker labels
speaker_embeddings: Optional dictionary mapping speaker IDs to embedding vectors
fill_nearest: If True, assign speakers even when there's no direct time overlap
Returns:
Updated transcript_result with speaker assignments and optionally embeddings
"""
@ -131,12 +131,12 @@ def assign_word_speakers(
# sum over speakers
speaker = dia_tmp.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
word["speaker"] = speaker
# Add speaker embeddings to the result if provided
if speaker_embeddings is not None:
transcript_result["speaker_embeddings"] = speaker_embeddings
return transcript_result
return transcript_result
class Segment: