style: minor code formatting

This commit is contained in:
Barabazs
2025-06-24 12:58:40 +00:00
parent 220fec9aea
commit 844736e4e4

View File

@ -30,16 +30,16 @@ class DiarizationPipeline:
) -> Union[tuple[pd.DataFrame, Optional[dict[str, list[float]]]], pd.DataFrame]: ) -> Union[tuple[pd.DataFrame, Optional[dict[str, list[float]]]], pd.DataFrame]:
""" """
Perform speaker diarization on audio. Perform speaker diarization on audio.
Args: Args:
audio: Path to audio file or audio array audio: Path to audio file or audio array
num_speakers: Exact number of speakers (if known) num_speakers: Exact number of speakers (if known)
min_speakers: Minimum number of speakers to detect min_speakers: Minimum number of speakers to detect
max_speakers: Maximum number of speakers to detect max_speakers: Maximum number of speakers to detect
return_embeddings: Whether to return speaker embeddings return_embeddings: Whether to return speaker embeddings
Returns: Returns:
If return_embeddings is True: If return_embeddings is True:
Tuple of (diarization dataframe, speaker embeddings dictionary) Tuple of (diarization dataframe, speaker embeddings dictionary)
Otherwise: Otherwise:
Just the diarization dataframe Just the diarization dataframe
@ -53,18 +53,18 @@ class DiarizationPipeline:
if return_embeddings: if return_embeddings:
diarization, embeddings = self.model( diarization, embeddings = self.model(
audio_data, audio_data,
num_speakers=num_speakers, num_speakers=num_speakers,
min_speakers=min_speakers, min_speakers=min_speakers,
max_speakers=max_speakers, max_speakers=max_speakers,
return_embeddings=True return_embeddings=True,
) )
else: else:
diarization = self.model( diarization = self.model(
audio_data, audio_data,
num_speakers=num_speakers, num_speakers=num_speakers,
min_speakers=min_speakers, min_speakers=min_speakers,
max_speakers=max_speakers max_speakers=max_speakers,
) )
embeddings = None embeddings = None
@ -91,13 +91,13 @@ def assign_word_speakers(
) -> Union[AlignedTranscriptionResult, TranscriptionResult]: ) -> Union[AlignedTranscriptionResult, TranscriptionResult]:
""" """
Assign speakers to words and segments in the transcript. Assign speakers to words and segments in the transcript.
Args: Args:
diarize_df: Diarization dataframe from DiarizationPipeline diarize_df: Diarization dataframe from DiarizationPipeline
transcript_result: Transcription result to augment with speaker labels transcript_result: Transcription result to augment with speaker labels
speaker_embeddings: Optional dictionary mapping speaker IDs to embedding vectors speaker_embeddings: Optional dictionary mapping speaker IDs to embedding vectors
fill_nearest: If True, assign speakers even when there's no direct time overlap fill_nearest: If True, assign speakers even when there's no direct time overlap
Returns: Returns:
Updated transcript_result with speaker assignments and optionally embeddings Updated transcript_result with speaker assignments and optionally embeddings
""" """
@ -131,12 +131,12 @@ def assign_word_speakers(
# sum over speakers # sum over speakers
speaker = dia_tmp.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0] speaker = dia_tmp.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
word["speaker"] = speaker word["speaker"] = speaker
# Add speaker embeddings to the result if provided # Add speaker embeddings to the result if provided
if speaker_embeddings is not None: if speaker_embeddings is not None:
transcript_result["speaker_embeddings"] = speaker_embeddings transcript_result["speaker_embeddings"] = speaker_embeddings
return transcript_result return transcript_result
class Segment: class Segment: