mirror of
https://github.com/m-bain/whisperX.git
synced 2025-07-01 18:17:27 -04:00
support for large-v3
This commit is contained in:
@ -140,7 +140,12 @@ class FasterWhisperPipeline(Pipeline):
|
||||
|
||||
def preprocess(self, audio):
|
||||
audio = audio['inputs']
|
||||
features = log_mel_spectrogram(audio, padding=N_SAMPLES - audio.shape[0])
|
||||
model_n_mels = self.model.feat_kwargs.get("feature_size")
|
||||
features = log_mel_spectrogram(
|
||||
audio,
|
||||
n_mels=model_n_mels if model_n_mels is not None else 80,
|
||||
padding=N_SAMPLES - audio.shape[0],
|
||||
)
|
||||
return {'inputs': features}
|
||||
|
||||
def _forward(self, model_inputs):
|
||||
@ -240,7 +245,9 @@ class FasterWhisperPipeline(Pipeline):
|
||||
def detect_language(self, audio: np.ndarray):
|
||||
if audio.shape[0] < N_SAMPLES:
|
||||
print("Warning: audio is shorter than 30s, language detection may be inaccurate.")
|
||||
model_n_mels = self.model.feat_kwargs.get("feature_size")
|
||||
segment = log_mel_spectrogram(audio[: N_SAMPLES],
|
||||
n_mels=model_n_mels if model_n_mels is not None else 80,
|
||||
padding=0 if audio.shape[0] >= N_SAMPLES else N_SAMPLES - audio.shape[0])
|
||||
encoder_output = self.model.encode(segment)
|
||||
results = self.model.model.detect_language(encoder_output)
|
||||
|
Binary file not shown.
@ -12,7 +12,6 @@ from .utils import exact_div
|
||||
# hard-coded audio hyperparameters
|
||||
SAMPLE_RATE = 16000
|
||||
N_FFT = 400
|
||||
N_MELS = 80
|
||||
HOP_LENGTH = 160
|
||||
CHUNK_LENGTH = 30
|
||||
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
|
||||
@ -93,7 +92,7 @@ def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
|
||||
def mel_filters(device, n_mels: int) -> torch.Tensor:
|
||||
"""
|
||||
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||||
Allows decoupling librosa dependency; saved using:
|
||||
@ -103,7 +102,7 @@ def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
|
||||
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
||||
)
|
||||
"""
|
||||
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
|
||||
assert n_mels in [80, 128], f"Unsupported n_mels: {n_mels}"
|
||||
with np.load(
|
||||
os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
|
||||
) as f:
|
||||
@ -112,7 +111,7 @@ def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
|
||||
|
||||
def log_mel_spectrogram(
|
||||
audio: Union[str, np.ndarray, torch.Tensor],
|
||||
n_mels: int = N_MELS,
|
||||
n_mels: int,
|
||||
padding: int = 0,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
):
|
||||
|
Reference in New Issue
Block a user