Files
whisperX/build/lib/whisperx/diarize.py

75 lines
3.2 KiB
Python
Raw Normal View History

import numpy as np
import pandas as pd
from pyannote.audio import Pipeline
from typing import Optional, Union
import torch
from .audio import load_audio, SAMPLE_RATE
class DiarizationPipeline:
def __init__(
self,
model_name="pyannote/speaker-diarization-3.1",
use_auth_token=None,
device: Optional[Union[str, torch.device]] = "cpu",
):
if isinstance(device, str):
device = torch.device(device)
self.model = Pipeline.from_pretrained(model_name, use_auth_token=use_auth_token).to(device)
def __call__(self, audio: Union[str, np.ndarray], num_speakers=None, min_speakers=None, max_speakers=None):
if isinstance(audio, str):
audio = load_audio(audio)
audio_data = {
'waveform': torch.from_numpy(audio[None, :]),
'sample_rate': SAMPLE_RATE
}
segments = self.model(audio_data, num_speakers = num_speakers, min_speakers=min_speakers, max_speakers=max_speakers)
diarize_df = pd.DataFrame(segments.itertracks(yield_label=True), columns=['segment', 'label', 'speaker'])
diarize_df['start'] = diarize_df['segment'].apply(lambda x: x.start)
diarize_df['end'] = diarize_df['segment'].apply(lambda x: x.end)
return diarize_df
def assign_word_speakers(diarize_df, transcript_result, fill_nearest=False):
transcript_segments = transcript_result["segments"]
for seg in transcript_segments:
# assign speaker to segment (if any)
diarize_df['intersection'] = np.minimum(diarize_df['end'], seg['end']) - np.maximum(diarize_df['start'], seg['start'])
diarize_df['union'] = np.maximum(diarize_df['end'], seg['end']) - np.minimum(diarize_df['start'], seg['start'])
# remove no hit, otherwise we look for closest (even negative intersection...)
if not fill_nearest:
dia_tmp = diarize_df[diarize_df['intersection'] > 0]
else:
dia_tmp = diarize_df
if len(dia_tmp) > 0:
# sum over speakers
speaker = dia_tmp.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
seg["speaker"] = speaker
# assign speaker to words
if 'words' in seg:
for word in seg['words']:
if 'start' in word:
diarize_df['intersection'] = np.minimum(diarize_df['end'], word['end']) - np.maximum(diarize_df['start'], word['start'])
diarize_df['union'] = np.maximum(diarize_df['end'], word['end']) - np.minimum(diarize_df['start'], word['start'])
# remove no hit
if not fill_nearest:
dia_tmp = diarize_df[diarize_df['intersection'] > 0]
else:
dia_tmp = diarize_df
if len(dia_tmp) > 0:
# sum over speakers
speaker = dia_tmp.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
word["speaker"] = speaker
return transcript_result
class Segment:
def __init__(self, start, end, speaker=None):
self.start = start
self.end = end
self.speaker = speaker