Files
whisperX/whisperx/diarize.py

76 lines
3.2 KiB
Python
Raw Normal View History

2023-01-25 19:40:41 +00:00
import numpy as np
import pandas as pd
2023-03-30 05:31:57 +01:00
from pyannote.audio import Pipeline
2023-05-04 16:25:34 +02:00
from typing import Optional, Union
import torch
2023-03-30 05:31:57 +01:00
2023-08-02 10:34:42 +03:00
from .audio import load_audio, SAMPLE_RATE
2023-08-02 10:11:43 +03:00
2023-09-26 17:18:20 +02:00
2023-03-30 05:31:57 +01:00
class DiarizationPipeline:
def __init__(
self,
2023-09-26 17:18:20 +02:00
model_name="pyannote/speaker-diarization-3.0",
2023-03-30 05:31:57 +01:00
use_auth_token=None,
2023-05-04 16:25:34 +02:00
device: Optional[Union[str, torch.device]] = "cpu",
2023-03-30 05:31:57 +01:00
):
2023-05-04 16:25:34 +02:00
if isinstance(device, str):
device = torch.device(device)
self.model = Pipeline.from_pretrained(model_name, use_auth_token=use_auth_token).to(device)
2023-03-30 05:31:57 +01:00
2023-08-02 10:36:56 +03:00
def __call__(self, audio: Union[str, np.ndarray], min_speakers=None, max_speakers=None):
2023-08-02 10:34:42 +03:00
if isinstance(audio, str):
audio = load_audio(audio)
2023-08-02 10:11:43 +03:00
audio_data = {
'waveform': torch.from_numpy(audio[None, :]),
'sample_rate': SAMPLE_RATE
}
segments = self.model(audio_data, min_speakers=min_speakers, max_speakers=max_speakers)
2023-03-30 05:31:57 +01:00
diarize_df = pd.DataFrame(segments.itertracks(yield_label=True))
diarize_df['start'] = diarize_df[0].apply(lambda x: x.start)
diarize_df['end'] = diarize_df[0].apply(lambda x: x.end)
diarize_df.rename(columns={2: "speaker"}, inplace=True)
2023-03-30 05:31:57 +01:00
return diarize_df
2023-01-25 19:40:41 +00:00
2023-04-01 00:06:40 +01:00
def assign_word_speakers(diarize_df, transcript_result, fill_nearest=False):
transcript_segments = transcript_result["segments"]
for seg in transcript_segments:
# assign speaker to segment (if any)
diarize_df['intersection'] = np.minimum(diarize_df['end'], seg['end']) - np.maximum(diarize_df['start'], seg['start'])
diarize_df['union'] = np.maximum(diarize_df['end'], seg['end']) - np.minimum(diarize_df['start'], seg['start'])
# remove no hit, otherwise we look for closest (even negative intersection...)
if not fill_nearest:
dia_tmp = diarize_df[diarize_df['intersection'] > 0]
2023-04-01 00:06:40 +01:00
else:
dia_tmp = diarize_df
if len(dia_tmp) > 0:
# sum over speakers
speaker = dia_tmp.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
seg["speaker"] = speaker
# assign speaker to words
if 'words' in seg:
for word in seg['words']:
if 'start' in word:
diarize_df['intersection'] = np.minimum(diarize_df['end'], word['end']) - np.maximum(diarize_df['start'], word['start'])
diarize_df['union'] = np.maximum(diarize_df['end'], word['end']) - np.minimum(diarize_df['start'], word['start'])
# remove no hit
if not fill_nearest:
dia_tmp = diarize_df[diarize_df['intersection'] > 0]
else:
dia_tmp = diarize_df
if len(dia_tmp) > 0:
# sum over speakers
speaker = dia_tmp.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
word["speaker"] = speaker
return transcript_result
2023-01-25 19:40:41 +00:00
class Segment:
def __init__(self, start, end, speaker=None):
self.start = start
self.end = end
self.speaker = speaker