mirror of
https://github.com/jayofelony/pwnagotchi.git
synced 2025-07-01 18:37:27 -04:00
@ -15,12 +15,11 @@ from pwnagotchi.automata import Automata
|
||||
from pwnagotchi.log import LastSession
|
||||
from pwnagotchi.bettercap import Client
|
||||
from pwnagotchi.mesh.utils import AsyncAdvertiser
|
||||
from pwnagotchi.ai.train import AsyncTrainer
|
||||
|
||||
RECOVERY_DATA_FILE = '/root/.pwnagotchi-recovery'
|
||||
|
||||
|
||||
class Agent(Client, Automata, AsyncAdvertiser, AsyncTrainer):
|
||||
class Agent(Client, Automata, AsyncAdvertiser):
|
||||
def __init__(self, view, config, keypair):
|
||||
Client.__init__(self,
|
||||
"127.0.0.1" if "hostname" not in config['bettercap'] else config['bettercap']['hostname'],
|
||||
@ -30,7 +29,6 @@ class Agent(Client, Automata, AsyncAdvertiser, AsyncTrainer):
|
||||
"pwnagotchi" if "password" not in config['bettercap'] else config['bettercap']['password'])
|
||||
Automata.__init__(self, config, view)
|
||||
AsyncAdvertiser.__init__(self, config, view, keypair)
|
||||
AsyncTrainer.__init__(self, config)
|
||||
|
||||
self._started_at = time.time()
|
||||
self._current_channel = 0
|
||||
@ -130,7 +128,6 @@ class Agent(Client, Automata, AsyncAdvertiser, AsyncTrainer):
|
||||
time.sleep(1)
|
||||
|
||||
def start(self):
|
||||
self.start_ai()
|
||||
self._wait_bettercap()
|
||||
self.setup_events()
|
||||
self.set_starting()
|
||||
|
@ -1,74 +0,0 @@
|
||||
import os
|
||||
import time
|
||||
import logging
|
||||
|
||||
# https://stackoverflow.com/questions/40426502/is-there-a-way-to-suppress-the-messages-tensorflow-prints/40426709
|
||||
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'}
|
||||
|
||||
|
||||
def load(config, agent, epoch, from_disk=True):
|
||||
config = config['ai']
|
||||
if not config['enabled']:
|
||||
logging.info("ai disabled")
|
||||
return False
|
||||
|
||||
try:
|
||||
begin = time.time()
|
||||
|
||||
logging.info("[AI] bootstrapping dependencies ...")
|
||||
|
||||
start = time.time()
|
||||
SB_BACKEND = "stable_baselines3"
|
||||
|
||||
from stable_baselines3 import A2C
|
||||
logging.debug("[AI] A2C imported in %.2fs" % (time.time() - start))
|
||||
|
||||
# remove invalid ai.parameters leftover from tensor_flow, if present
|
||||
for key in [ 'alpha', 'epsilon', 'lr_schedule' ]:
|
||||
if key in config['params']:
|
||||
logging.info("Removing legacy ai parameter %s" % key);
|
||||
del config['params'][key]
|
||||
|
||||
start = time.time()
|
||||
from stable_baselines3.a2c import MlpPolicy
|
||||
logging.debug("[AI] MlpPolicy imported in %.2fs" % (time.time() - start))
|
||||
SB_A2C_POLICY = MlpPolicy
|
||||
|
||||
start = time.time()
|
||||
from stable_baselines3.common.vec_env import DummyVecEnv
|
||||
logging.debug("[AI] DummyVecEnv imported in %.2fs" % (time.time() - start))
|
||||
|
||||
start = time.time()
|
||||
import pwnagotchi.ai.gym as wrappers
|
||||
logging.debug("[AI] gym wrapper imported in %.2fs" % (time.time() - start))
|
||||
|
||||
env = wrappers.Environment(agent, epoch)
|
||||
env = DummyVecEnv([lambda: env])
|
||||
|
||||
logging.info("[AI] creating model ...")
|
||||
|
||||
start = time.time()
|
||||
a2c = A2C(SB_A2C_POLICY, env, **config['params'])
|
||||
logging.debug("[AI] A2C created in %.2fs" % (time.time() - start))
|
||||
|
||||
if from_disk and os.path.exists(config['path']):
|
||||
logging.info("[AI] loading %s ..." % config['path'])
|
||||
start = time.time()
|
||||
a2c.load(config['path'], env)
|
||||
logging.debug("[AI] A2C loaded in %.2fs" % (time.time() - start))
|
||||
else:
|
||||
logging.info("[AI] model created:")
|
||||
for key, value in config['params'].items():
|
||||
logging.info(" %s: %s" % (key, value))
|
||||
|
||||
logging.debug("[AI] total loading time is %.2fs" % (time.time() - begin))
|
||||
|
||||
return a2c
|
||||
except Exception as e:
|
||||
logging.info("[AI] Error while starting AI")
|
||||
logging.debug("[AI] error while starting AI (%s)", e)
|
||||
logging.info("[AI] Deleting brain and restarting.")
|
||||
os.system("rm /root/brain.nn && service pwnagotchi restart")
|
||||
|
||||
logging.warning("[AI] AI not loaded!")
|
||||
return False
|
@ -1,61 +0,0 @@
|
||||
import numpy as np
|
||||
|
||||
import pwnagotchi.mesh.wifi as wifi
|
||||
|
||||
MAX_EPOCH_DURATION = 1024
|
||||
|
||||
|
||||
histogram_size = wifi.NumChannels
|
||||
|
||||
shape = (1,
|
||||
# aps per channel
|
||||
histogram_size +
|
||||
# clients per channel
|
||||
histogram_size +
|
||||
# peers per channel
|
||||
histogram_size +
|
||||
# duration
|
||||
1 +
|
||||
# inactive
|
||||
1 +
|
||||
# active
|
||||
1 +
|
||||
# missed
|
||||
1 +
|
||||
# hops
|
||||
1 +
|
||||
# deauths
|
||||
1 +
|
||||
# assocs
|
||||
1 +
|
||||
# handshakes
|
||||
1)
|
||||
|
||||
|
||||
def featurize(state, step):
|
||||
tot_epochs = step + 1e-10
|
||||
tot_interactions = (state['num_deauths'] + state['num_associations']) + 1e-10
|
||||
return np.concatenate((
|
||||
# aps per channel
|
||||
state['aps_histogram'],
|
||||
# clients per channel
|
||||
state['sta_histogram'],
|
||||
# peers per channel
|
||||
state['peers_histogram'],
|
||||
# duration
|
||||
[np.clip(state['duration_secs'] / MAX_EPOCH_DURATION, 0.0, 1.0)],
|
||||
# inactive
|
||||
[state['inactive_for_epochs'] / tot_epochs],
|
||||
# active
|
||||
[state['active_for_epochs'] / tot_epochs],
|
||||
# missed
|
||||
[state['missed_interactions'] / tot_interactions],
|
||||
# hops
|
||||
[state['num_hops'] / wifi.NumChannels],
|
||||
# deauths
|
||||
[state['num_deauths'] / tot_interactions],
|
||||
# assocs
|
||||
[state['num_associations'] / tot_interactions],
|
||||
# handshakes
|
||||
[state['num_handshakes'] / tot_interactions],
|
||||
))
|
@ -1,148 +0,0 @@
|
||||
import logging
|
||||
import gymnasium as gym
|
||||
from gymnasium import spaces
|
||||
import numpy as np
|
||||
|
||||
import pwnagotchi.ai.featurizer as featurizer
|
||||
import pwnagotchi.ai.reward as reward
|
||||
from pwnagotchi.ai.parameter import Parameter
|
||||
|
||||
|
||||
class Environment(gym.Env):
|
||||
render_mode = "human"
|
||||
metadata = {'render_modes': ['human']}
|
||||
params = [
|
||||
Parameter('min_rssi', min_value=-200, max_value=-50),
|
||||
Parameter('ap_ttl', min_value=30, max_value=600),
|
||||
Parameter('sta_ttl', min_value=60, max_value=300),
|
||||
|
||||
Parameter('recon_time', min_value=5, max_value=60),
|
||||
Parameter('max_inactive_scale', min_value=3, max_value=10),
|
||||
Parameter('recon_inactive_multiplier', min_value=1, max_value=3),
|
||||
Parameter('hop_recon_time', min_value=5, max_value=60),
|
||||
Parameter('min_recon_time', min_value=1, max_value=30),
|
||||
Parameter('max_interactions', min_value=1, max_value=25),
|
||||
Parameter('max_misses_for_recon', min_value=3, max_value=10),
|
||||
Parameter('excited_num_epochs', min_value=5, max_value=30),
|
||||
Parameter('bored_num_epochs', min_value=5, max_value=30),
|
||||
Parameter('sad_num_epochs', min_value=5, max_value=30),
|
||||
]
|
||||
|
||||
def __init__(self, agent, epoch):
|
||||
super(Environment, self).__init__()
|
||||
self._agent = agent
|
||||
self._epoch = epoch
|
||||
self._epoch_num = 0
|
||||
self._last_render = None
|
||||
|
||||
channels = agent.supported_channels()
|
||||
|
||||
Environment.params += [
|
||||
Parameter('_channel_%d' % ch, min_value=0, max_value=1, meta=ch + 1) for ch in
|
||||
range(featurizer.histogram_size) if ch + 1 in channels
|
||||
]
|
||||
|
||||
self.last = {
|
||||
'reward': 0.0,
|
||||
'observation': None,
|
||||
'policy': None,
|
||||
'params': {},
|
||||
'state': None,
|
||||
'state_v': None
|
||||
}
|
||||
|
||||
self.action_space = spaces.MultiDiscrete([p.space_size() for p in Environment.params if p.trainable])
|
||||
self.observation_space = spaces.Box(low=0, high=1, shape=featurizer.shape, dtype=np.float32)
|
||||
self.reward_range = reward.range
|
||||
|
||||
@staticmethod
|
||||
def policy_size():
|
||||
return len(list(p for p in Environment.params if p.trainable))
|
||||
|
||||
@staticmethod
|
||||
def policy_to_params(policy):
|
||||
num = len(policy)
|
||||
params = {}
|
||||
|
||||
assert len(Environment.params) == num
|
||||
|
||||
channels = []
|
||||
|
||||
for i in range(num):
|
||||
param = Environment.params[i]
|
||||
|
||||
if '_channel' not in param.name:
|
||||
params[param.name] = param.to_param_value(policy[i])
|
||||
else:
|
||||
has_chan = param.to_param_value(policy[i])
|
||||
# print("%s policy:%s bool:%s" % (param.name, policy[i], has_chan))
|
||||
chan = param.meta
|
||||
if has_chan:
|
||||
channels.append(chan)
|
||||
|
||||
params['channels'] = channels
|
||||
|
||||
return params
|
||||
|
||||
def _next_epoch(self):
|
||||
logging.debug("[ai] waiting for epoch to finish ...")
|
||||
return self._epoch.wait_for_epoch_data()
|
||||
|
||||
def _apply_policy(self, policy):
|
||||
new_params = Environment.policy_to_params(policy)
|
||||
self.last['policy'] = policy
|
||||
self.last['params'] = new_params
|
||||
self._agent.on_ai_policy(new_params)
|
||||
|
||||
def step(self, policy):
|
||||
# create the parameters from the policy and update
|
||||
# them in the algorithm
|
||||
self._apply_policy(policy)
|
||||
self._epoch_num += 1
|
||||
|
||||
# wait for the algorithm to run with the new parameters
|
||||
state = self._next_epoch()
|
||||
|
||||
self.last['reward'] = state['reward']
|
||||
self.last['state'] = state
|
||||
self.last['state_v'] = featurizer.featurize(state, self._epoch_num)
|
||||
|
||||
self._agent.on_ai_step()
|
||||
|
||||
return self.last['state_v'], self.last['reward'], not self._agent.is_training(), {}
|
||||
|
||||
def reset(self):
|
||||
# logging.info("[ai] resetting environment ...")
|
||||
self._epoch_num = 0
|
||||
state = self._next_epoch()
|
||||
self.last['state'] = state
|
||||
self.last['state_v'] = featurizer.featurize(state, 1)
|
||||
return self.last['state_v']
|
||||
|
||||
def _render_histogram(self, hist):
|
||||
for ch in range(featurizer.histogram_size):
|
||||
if hist[ch]:
|
||||
logging.info(" CH %d: %s" % (ch + 1, hist[ch]))
|
||||
|
||||
def render(self, mode='human', close=False, force=False):
|
||||
# when using a vectorialized environment, render gets called twice
|
||||
# avoid rendering the same data
|
||||
if self._last_render == self._epoch_num:
|
||||
return
|
||||
|
||||
if not self._agent.is_training() and not force:
|
||||
return
|
||||
|
||||
self._last_render = self._epoch_num
|
||||
|
||||
logging.info("[AI] --- training epoch %d/%d ---" % (self._epoch_num, self._agent.training_epochs()))
|
||||
logging.info("[AI] REWARD: %f" % self.last['reward'])
|
||||
|
||||
logging.debug(
|
||||
"[AI] policy: %s" % ', '.join("%s:%s" % (name, value) for name, value in self.last['params'].items()))
|
||||
|
||||
logging.info("[AI] observation:")
|
||||
for name, value in self.last['state'].items():
|
||||
if 'histogram' in name:
|
||||
logging.info(" %s" % name.replace('_histogram', ''))
|
||||
self._render_histogram(value)
|
@ -1,30 +0,0 @@
|
||||
from gymnasium import spaces
|
||||
|
||||
|
||||
class Parameter(object):
|
||||
def __init__(self, name, value=0.0, min_value=0, max_value=2, meta=None, trainable=True):
|
||||
self.name = name
|
||||
self.trainable = trainable
|
||||
self.meta = meta
|
||||
self.value = value
|
||||
self.min_value = min_value
|
||||
self.max_value = max_value + 1
|
||||
|
||||
# gymnasium.space.Discrete is within [0, 1, 2, ..., n-1]
|
||||
if self.min_value < 0:
|
||||
self.scale_factor = abs(self.min_value)
|
||||
elif self.min_value > 0:
|
||||
self.scale_factor = -self.min_value
|
||||
else:
|
||||
self.scale_factor = 0
|
||||
|
||||
def space_size(self):
|
||||
return self.max_value + self.scale_factor
|
||||
|
||||
def space(self):
|
||||
return spaces.Discrete(self.max_value + self.scale_factor)
|
||||
|
||||
def to_param_value(self, policy_v):
|
||||
self.value = policy_v - self.scale_factor
|
||||
assert self.min_value <= self.value <= self.max_value
|
||||
return int(self.value)
|
@ -1,198 +0,0 @@
|
||||
# import _thread
|
||||
import threading
|
||||
import time
|
||||
import random
|
||||
import os
|
||||
import json
|
||||
import logging
|
||||
|
||||
import pwnagotchi.plugins as plugins
|
||||
import pwnagotchi.ai as ai
|
||||
|
||||
|
||||
class Stats(object):
|
||||
def __init__(self, path, events_receiver):
|
||||
self._lock = threading.Lock()
|
||||
self._receiver = events_receiver
|
||||
|
||||
self.path = path
|
||||
self.born_at = time.time()
|
||||
# total epochs lived (trained + just eval)
|
||||
self.epochs_lived = 0
|
||||
# total training epochs
|
||||
self.epochs_trained = 0
|
||||
|
||||
self.worst_reward = 0.0
|
||||
self.best_reward = 0.0
|
||||
|
||||
self.load()
|
||||
|
||||
def on_epoch(self, data, training):
|
||||
best_r = False
|
||||
worst_r = False
|
||||
with self._lock:
|
||||
reward = data['reward']
|
||||
if reward < self.worst_reward:
|
||||
self.worst_reward = reward
|
||||
worst_r = True
|
||||
|
||||
elif reward > self.best_reward:
|
||||
best_r = True
|
||||
self.best_reward = reward
|
||||
|
||||
self.epochs_lived += 1
|
||||
if training:
|
||||
self.epochs_trained += 1
|
||||
|
||||
self.save()
|
||||
|
||||
if best_r:
|
||||
self._receiver.on_ai_best_reward(reward)
|
||||
elif worst_r:
|
||||
self._receiver.on_ai_worst_reward(reward)
|
||||
|
||||
def load(self):
|
||||
with self._lock:
|
||||
if os.path.exists(self.path) and os.path.getsize(self.path) > 0:
|
||||
logging.info("[AI] loading %s" % self.path)
|
||||
with open(self.path, 'rt') as fp:
|
||||
obj = json.load(fp)
|
||||
|
||||
self.born_at = obj['born_at']
|
||||
self.epochs_lived, self.epochs_trained = obj['epochs_lived'], obj['epochs_trained']
|
||||
self.best_reward, self.worst_reward = obj['rewards']['best'], obj['rewards']['worst']
|
||||
|
||||
def save(self):
|
||||
with self._lock:
|
||||
logging.info("[AI] saving %s" % self.path)
|
||||
|
||||
data = json.dumps({
|
||||
'born_at': self.born_at,
|
||||
'epochs_lived': self.epochs_lived,
|
||||
'epochs_trained': self.epochs_trained,
|
||||
'rewards': {
|
||||
'best': self.best_reward,
|
||||
'worst': self.worst_reward
|
||||
}
|
||||
})
|
||||
|
||||
temp = "%s.tmp" % self.path
|
||||
back = "%s.bak" % self.path
|
||||
with open(temp, 'wt') as fp:
|
||||
fp.write(data)
|
||||
|
||||
if os.path.isfile(self.path):
|
||||
os.replace(self.path, back)
|
||||
os.replace(temp, self.path)
|
||||
|
||||
|
||||
class AsyncTrainer(object):
|
||||
def __init__(self, config):
|
||||
self._config = config
|
||||
self._model = None
|
||||
self._is_training = False
|
||||
self._training_epochs = 0
|
||||
self._nn_path = self._config['ai']['path']
|
||||
self._stats = Stats("%s.json" % os.path.splitext(self._nn_path)[0], self)
|
||||
|
||||
def set_training(self, training, for_epochs=0):
|
||||
self._is_training = training
|
||||
self._training_epochs = for_epochs
|
||||
|
||||
if training:
|
||||
plugins.on('ai_training_start', self, for_epochs)
|
||||
else:
|
||||
plugins.on('ai_training_end', self)
|
||||
|
||||
def is_training(self):
|
||||
return self._is_training
|
||||
|
||||
def training_epochs(self):
|
||||
return self._training_epochs
|
||||
|
||||
def start_ai(self):
|
||||
#_thread.start_new_thread(self._ai_worker, ())
|
||||
threading.Thread(target=self._ai_worker, args=(), name="AI Worker", daemon=True).start()
|
||||
|
||||
def _save_ai(self):
|
||||
logging.info("[AI] saving model to %s ..." % self._nn_path)
|
||||
temp = "%s.tmp" % self._nn_path
|
||||
self._model.save(temp)
|
||||
os.replace(temp, self._nn_path)
|
||||
|
||||
def on_ai_step(self):
|
||||
self._model.env.render()
|
||||
|
||||
if self._is_training:
|
||||
self._save_ai()
|
||||
|
||||
self._stats.on_epoch(self._epoch.data(), self._is_training)
|
||||
|
||||
def on_ai_training_step(self, _locals, _globals):
|
||||
self._model.env.render()
|
||||
plugins.on('ai_training_step', self, _locals, _globals)
|
||||
|
||||
def on_ai_policy(self, new_params):
|
||||
plugins.on('ai_policy', self, new_params)
|
||||
logging.info("[AI] setting new policy:")
|
||||
for name, value in new_params.items():
|
||||
if name in self._config['personality']:
|
||||
curr_value = self._config['personality'][name]
|
||||
if curr_value != value:
|
||||
logging.info("[AI] ! %s: %s -> %s" % (name, curr_value, value))
|
||||
self._config['personality'][name] = value
|
||||
else:
|
||||
logging.error("[AI] param %s not in personality configuration!" % name)
|
||||
|
||||
self.run('set wifi.ap.ttl %d' % self._config['personality']['ap_ttl'])
|
||||
self.run('set wifi.sta.ttl %d' % self._config['personality']['sta_ttl'])
|
||||
self.run('set wifi.rssi.min %d' % self._config['personality']['min_rssi'])
|
||||
|
||||
def on_ai_ready(self):
|
||||
self._view.on_ai_ready()
|
||||
plugins.on('ai_ready', self)
|
||||
|
||||
def on_ai_best_reward(self, r):
|
||||
logging.info("[AI] best reward so far: %s" % r)
|
||||
self._view.on_motivated(r)
|
||||
plugins.on('ai_best_reward', self, r)
|
||||
|
||||
def on_ai_worst_reward(self, r):
|
||||
logging.info("[AI] worst reward so far: %s" % r)
|
||||
self._view.on_demotivated(r)
|
||||
plugins.on('ai_worst_reward', self, r)
|
||||
|
||||
def _ai_worker(self):
|
||||
self._model = ai.load(self._config, self, self._epoch)
|
||||
|
||||
if self._model:
|
||||
self.on_ai_ready()
|
||||
|
||||
epochs_per_episode = self._config['ai']['epochs_per_episode']
|
||||
|
||||
obs = None
|
||||
while True:
|
||||
self._model.env.render()
|
||||
# enter in training mode?
|
||||
if random.random() > self._config['ai']['laziness']:
|
||||
logging.info("[AI] learning for %d epochs ..." % epochs_per_episode)
|
||||
try:
|
||||
self.set_training(True, epochs_per_episode)
|
||||
# back up brain file before starting new training set
|
||||
if os.path.isfile(self._nn_path):
|
||||
back = "%s.bak" % self._nn_path
|
||||
os.replace(self._nn_path, back)
|
||||
self._view.set("mode", " AI")
|
||||
self._model.learn(total_timesteps=epochs_per_episode, callback=self.on_ai_training_step)
|
||||
except Exception as e:
|
||||
logging.exception("[AI] error while training (%s)", e)
|
||||
finally:
|
||||
self.set_training(False)
|
||||
obs = self._model.env.reset()
|
||||
# init the first time
|
||||
elif obs is None:
|
||||
obs = self._model.env.reset()
|
||||
|
||||
# run the inference
|
||||
action, _ = self._model.predict(obs)
|
||||
obs, _, _, _ = self._model.env.step(action)
|
@ -1,16 +0,0 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def normalize(v, min_v, max_v):
|
||||
return (v - min_v) / (max_v - min_v)
|
||||
|
||||
|
||||
def as_batches(x, y, batch_size, shuffle=True):
|
||||
x_size = len(x)
|
||||
assert x_size == len(y)
|
||||
|
||||
indices = np.random.permutation(x_size) if shuffle else None
|
||||
|
||||
for offset in range(0, x_size - batch_size + 1, batch_size):
|
||||
excerpt = indices[offset:offset + batch_size] if shuffle else slice(offset, offset + batch_size)
|
||||
yield x[excerpt], y[excerpt]
|
Reference in New Issue
Block a user