Big update

This commit is contained in:
dadav
2020-04-03 19:01:40 +02:00
parent 5d8d86204a
commit 1f2dd73976
36 changed files with 1590 additions and 515 deletions

View File

@ -1,12 +1,9 @@
import os
import time
import warnings
import logging
# https://stackoverflow.com/questions/40426502/is-there-a-way-to-suppress-the-messages-tensorflow-prints/40426709
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'}
# https://stackoverflow.com/questions/15777951/how-to-suppress-pandas-future-warning
warnings.simplefilter(action='ignore', category=FutureWarning)
def load(config, agent, epoch, from_disk=True):
@ -59,7 +56,7 @@ def load(config, agent, epoch, from_disk=True):
return a2c
except Exception as e:
logging.exception("error while starting AI")
logging.exception("error while starting AI (%s)", e)
logging.warning("[ai] AI not loaded!")
return False

View File

@ -19,6 +19,10 @@ class Epoch(object):
self.active_for = 0
# number of epochs with no visible access points
self.blind_for = 0
# number of epochs in sad state
self.sad_for = 0
# number of epochs in bored state
self.bored_for = 0
# did deauth in this epoch in the current channel?
self.did_deauth = False
# number of deauths in this epoch
@ -99,13 +103,13 @@ class Epoch(object):
try:
aps_per_chan[ch_idx] += 1.0
sta_per_chan[ch_idx] += len(ap['clients'])
except IndexError as e:
except IndexError:
logging.error("got data on channel %d, we can store %d channels" % (ap['channel'], wifi.NumChannels))
for peer in peers:
try:
peers_per_chan[peer.last_channel - 1] += 1.0
except IndexError as e:
except IndexError:
logging.error(
"got peer data on channel %d, we can store %d channels" % (peer.last_channel, wifi.NumChannels))
@ -157,6 +161,20 @@ class Epoch(object):
else:
self.active_for += 1
self.inactive_for = 0
self.sad_for = 0
self.bored_for = 0
if self.inactive_for >= self.config['personality']['sad_num_epochs']:
# sad > bored; cant be sad and bored
self.bored_for = 0
self.sad_for += 1
elif self.inactive_for >= self.config['personality']['bored_num_epochs']:
# sad_treshhold > inactive > bored_treshhold; cant be sad and bored
self.sad_for = 0
self.bored_for += 1
else:
self.sad_for = 0
self.bored_for = 0
now = time.time()
cpu = pwnagotchi.cpu_load()
@ -172,6 +190,8 @@ class Epoch(object):
'blind_for_epochs': self.blind_for,
'inactive_for_epochs': self.inactive_for,
'active_for_epochs': self.active_for,
'sad_for_epochs': self.sad_for,
'bored_for_epochs': self.bored_for,
'missed_interactions': self.num_missed,
'num_hops': self.num_hops,
'num_peers': self.num_peers,
@ -188,13 +208,15 @@ class Epoch(object):
self._epoch_data['reward'] = self._reward(self.epoch + 1, self._epoch_data)
self._epoch_data_ready.set()
logging.info("[epoch %d] duration=%s slept_for=%s blind=%d inactive=%d active=%d peers=%d tot_bond=%.2f "
logging.info("[epoch %d] duration=%s slept_for=%s blind=%d sad=%d bored=%d inactive=%d active=%d peers=%d tot_bond=%.2f "
"avg_bond=%.2f hops=%d missed=%d deauths=%d assocs=%d handshakes=%d cpu=%d%% mem=%d%% "
"temperature=%dC reward=%s" % (
self.epoch,
utils.secs_to_hhmmss(self.epoch_duration),
utils.secs_to_hhmmss(self.num_slept),
self.blind_for,
self.sad_for,
self.bored_for,
self.inactive_for,
self.active_for,
self.num_peers,

View File

@ -18,4 +18,10 @@ class RewardFunction(object):
m = -.3 * (state['missed_interactions'] / tot_interactions)
i = -.2 * (state['inactive_for_epochs'] / tot_epochs)
return h + a + c + b + i + m
# include emotions if state >= 5 epochs
_sad = state['sad_for_epochs'] if state['sad_for_epochs'] >= 5 else 0
_bored = state['bored_for_epochs'] if state['bored_for_epochs'] >= 5 else 0
s = -.2 * (_sad / tot_epochs)
l = -.1 * (_bored / tot_epochs)
return h + a + c + b + i + m + s + l

View File

@ -176,7 +176,7 @@ class AsyncTrainer(object):
self.set_training(True, epochs_per_episode)
self._model.learn(total_timesteps=epochs_per_episode, callback=self.on_ai_training_step)
except Exception as e:
logging.exception("[ai] error while training")
logging.exception("[ai] error while training (%s)", e)
finally:
self.set_training(False)
obs = self._model.env.reset()