ﬁ adafruit learning system

ADXL345 Digital Accelerometer

ADXL345 Digital
Accelerometer

Guide Contents

Guide Contents 2
Overview 3
How it Works: 3
(https://adafru.it/c5f)MEMS - Micro Electro-Mechanical Systems 3
Assembly and Wiring 5
Assembly: 5
Position the Header: 5
Add the Breakout: 5
And Solder! 6
12C Wiring: 6
Programming and Calibration 8
Install the Library: 8
Test: 8
Calibrate: 8
Gravity as a Calibration Reference 9
Calibration Method: 9
Mount the Sensor: 9
Load the Calibration Sketch: 9
Position the Block: 10
Reposition the Block: 10
(https://adafru.it/c5g) 10
Repeat: 10
(Hint:) 11
Calibration Results: 11
Calibration Sketch: 11
Typical Calibration Output: 13
Library Reference 14
Constructor: 14
Initialization() 14
Sensor Detalils: 14
Getting and Setting the operating range: 14
Getting and Setting the Data Rate: 14
Reading Sensor Events: 15
Python and CircuitPython 16
CircuitPython Microcontroller Wiring 16
Python Computer Wiring 17
Library Installation 18
Python Installation of the ADXL34x Library 18
CircuitPython & Python Usage 18
Full Example Code 19
Motion, Tap and Freefall 20
Python Docs 21
Downloads 22
Files 22
Schematic & Fabrication Print 22

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 2 of 23

Overview

The ADXL345 is a low-power, 3-axis MEMS accelerometer modules with both 12C and SPI interfaces. The
Adafruit Breakout boards for these modules feature on-board 3.3v voltage regulation and level shifting
which makes them simple to interface with 5v microcontrollers such as the Arduino.

The ADXL345 features 4 sensitivity ranges from +/- 2G to +/- 16G. And it supports output data rates
ranging from 10Hz to 3200Hz.

ADXL345 datasheet (https://adafru.it/c5e)

How it Works:

(https://adafru.it/c5f)MEMS - Micro Electro-Mechanical Systems
The sensor consists of a micro-machined structure on a silicon wafer. The structure is suspended by
polysilicon springs which allow it to deflect smoothly in any direction when subject to acceleration in the
X, Y and/or Z axis. Deflection causes a change in capacitance between fixed plates and plates attached to
the suspended structure. This change in capacitance on each axis is converted to an output voltage
proportional to the acceleration on that axis.

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 3 of 23

http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
http://learn.adafruit.com/adafruit-analog-accelerometer-breakouts#mems-micro-electro-mechanical-systems
http://learn.adafruit.com/adxl345-digital-accelerometer/programming#repeat

ADXL345 Diqgital
Accelerometer

1

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 4 of 23

Assembly and Wiring

The board comes with all surface-mount components pre-soldered. The included header strip can be
soldered on for convenient use on a breadboard or with 0.1" connectors. However, for applications
subject to extreme accelerations, shock or vibration, locking connectors or direct soldering is advised.

Assembly:

Position the Header:
Cut the header to size if necessary. Then plug the header -

long pins down - into a breadboard to stabilize it for soldering.

LI B O
FEwwag
EmE

Add the Breakout:

Align the breakout board and place it over the header pins on
the breadboard.

LI B
LB N N

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 5 of 23

https://learn.adafruit.com//assets/6363
https://learn.adafruit.com//assets/6364

rvrwa
LI B B

And Solder!

Be sure to solder all pins to assure good electrical contact.

12C Wiring:
The ADXL345 Breagkout has an I2C address of Ox53. It can share the I2C bus with other 12C devices as
long as each device has a unique address. Only 4 connections are required for I2C communication:

e GND->GND

® VIN->+5v

® SDA->SDA (Analog 4 on "Classic Arduinos")

® SCL->SCL (Analog 5 on "Classic Arduinos")

The Adafruit breakout has level shifting and regulation circuitry so you can power it from 3-5V and use 3V
or 5V logic levels for i2c

B B AR EE R BEPR AN BR"”

LS
-
-

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 6 of 23

https://learn.adafruit.com//assets/6365

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 7 of 23

Programming and Calibration
Install the Library:

Download the ADXL345 library (https://adafru.it/aZzn) and install it. You will also need the Adafruit Sensor
Library (https://adafru.it/aZm) if you do not already have it installed.

This guide (https://adafru.it/a¥YM) will help you with the install process.

Test:

Click "File->Examples->Adafruit_ADXL345->sensortest" to load the example sketch from the library.

Then click on the compile/upload button to compile and upload the sketch to the Arduino. You should see
output similar to below. Watch the values change as you move the board around.

.
|| com26 = @X |
-
Send
Accelerometer Test -
Sensor: ADXL345
J|Driver Ver: 1
UOnigque ID: 12345
Max Value: 300.00 m/3~2
Min Value: 1100.00 mfa~2
|Resclution: 0.01 m/s~2
Data Rate: 400 Hz
Range: o i L
X: 0.08 ¥: -0.12 Z: 1.10 m/s~2
H: 0.08 ¥: -0032 Z:01.14 mfse2
'X: 0.08 ¥: -0.12 Z: 1.10 m/s~2
¥: 0.08 ¥: -0.12 Z: 1.14 mfs~2
X: 0.08 ¥: -0.12 Z: 1.10 mfs~2
j|X: 0.08 ¥: -0.12 Z: 1.10 mfs~2
X: 0.08 ¥: -0.12 Z: 1.10 mfs~2
H: 0.08 ¥: -0.12 Z: I.10 mfs~2
X: 0.08 ¥: -0.12 Z: 1.14 wm/s~2
X: 0.08 ¥: =002 Z2:01.14 mise2
X: 0.08 ¥: -0.12 Z: 1.10 m/s~2
X: 0.08 ¥: -0.12 Z: 1.14 m/s~2
X: 0.08 Y: -0.16 Z: 1.10 mfs~2
X: 0.08 ¥: -0.12 Z: 1.10 mfs~2
X: 0.08 ¥: -0.12 Z: 1.10 mfs~2
H: o.08 ¥: -0.12 Z:1.10 mfsc2
X: 0.08 ¥: -0.12 Z: 1.10 mfs~2 o
[] Autoscroll | Mewline ¥ | 9600 baud ¥
.

Calibrate:

The ADXL chips are calibrated at the factory to a level of precision sufficient for most purposes. For critical
applications where a higher degree of accuracy is required, you may wish to re-calibrate the sensor
yourself.

Calibration does not change the sensor outputs. But it tells you what the sensor output is for a known

stable reference force in both directions on each axis. Knowing that, you can calculate the corrected
output from a sensor reading.

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 8 of 23

https://github.com/adafruit/Adafruit_ADXL345
https://github.com/adafruit/Adafruit_Sensor
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

+z

-Z
Gravity as a Calibration Reference
Acceleration can be measured in units of gravitational force or "G", where 1G represents the gravitational

pull at the surface of the earth. Gravity is a relatively stable force and makes a convenient and reliable
calibration reference for surface-dwelling earthlings.

Calibration Method:

To calibrate the sensor to the gravitational reference, you need to determine the sensor output for each
axis when it is precisely aligned with the axis of gravitational pull. Laboratory quality calibration uses
precision positioning jigs. The method described here is simple and gives surprisingly good results with
just a block of wood.

Mount the Sensor:

FiIrst mount the sensor securely to a block or a box. The size is not important, as long as all the sides are
at right angles. The material is not important as long as it is fairly rigid.

Load the Calibration Sketch:

Load and run the Calibration sketch below. Open the Serial Monitor and wait for the prompt.

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 9 of 23

Position the Block:

Place the block on a firm flat surface such as a sturdy table.
Type a character in the Serial Monitor and hit return. The
sketch will take a measurement on that axis and print the

results.

Reposition the Block:
Turn the block so a different side is flat on the table and type
another key to measure that axis.

(https://adafru.it/c5q)

Repeat:

Repeat for all six sides of the block to measure the positive
and negative aspects of each axis.

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 10 of 23

https://learn.adafruit.com//assets/6465
https://learn.adafruit.com//assets/6467
https://learn.adafruit.com//assets/6468

(Hint.)
For the sides obstructed by the breakout board and/or wires,
~|press the block up against the bottom of the table while
_taking the reading.

Calibration Results:
Once all six sides have been sampled, the values printed in the Serial Monitor will represent actual

measurements for +/- 1G forces on each axis. These values can be used to re-scale readings for better
accuracy.

Calibration Sketch:

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 11 of 23

https://learn.adafruit.com//assets/6469

#include <Wire.h>
#include <Adafruit Sensor.h>
#include <Adafruit ADXL345 U.h>

/* Assign a unique ID to this sensor at the same time */
Adafruit ADXL345 Unified accel = Adafruit ADXL345 Unified(12345);

float AccelMinX
float AccelMaxX
float AccelMinY
float AccelMaxY
float AccelMinZ
float AccelMaxZ

1}
[clol ool oMol

void setup(void)

{
Serial.begin(9600);
Serial.println("ADXL345 Accelerometer Calibration");
Serial.println("");

/* Initialise the sensor */
if(laccel.begin())

{
/* There was a problem detecting the ADXL345 ... check your connections */
Serial.println("Ooops, no ADXL345 detected ... Check your wiring!");
while(1);
}
}
void loop(void)
{
Serial.println("Type key when ready...");
while (!Serial.available()){} // wait for a character
/* Get a new sensor event */
sensors event t accelEvent;
accel.getEvent(&accelEvent);
if (accelEvent.acceleration.x < AccelMinX) AccelMinX = accelEvent.acceleration.x;
if (accelEvent.acceleration.x > AccelMaxX) AccelMaxX = accelEvent.acceleration.x;
if (accelEvent.acceleration.y < AccelMinY) AccelMinY = accelEvent.acceleration.y;
if (accelEvent.acceleration.y > AccelMaxY) AccelMaxY = accelEvent.acceleration.y;
if (accelEvent.acceleration.z < AccelMinZ) AccelMinZ = accelEvent.acceleration.z;
if (accelEvent.acceleration.z > AccelMaxZ) AccelMaxZ = accelEvent.acceleration.z;
Serial.print("Accel Minimums: "); Serial.print(AccelMinX); Serial.print(" ");Serial.print(AccelMinY); Serial.
print(" "); Serial.print(AccelMinZ); Serial.println();
Serial.print("Accel Maximums: "); Serial.print(AccelMaxX); Serial.print(" ");Serial.print(AccelMaxY); Serial.
print(" "); Serial.print(AccelMaxZ); Serial.println();
while (Serial.available())
{
Serial.read(); // clear the input buffer
}
}

© Adafruit Industries

https://learn.adafruit.com/adxI345-digital-accelerometer

Page 12 of 23

Typical Calibration Output:

ADXL345 Accelerometer Calibration

Type key when ready...

Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...

Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...

Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...

Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...

Accel Minimums: 0.00 0.00 -0.24
Accel Maximums: 0.12 1.37 1.14
Type key when ready...

Accel Minimums: 0.00 0.00 -0.24
Accel Maximums: 0.12 1.37 1.14
Type key when ready...

Accel Minimums: 0.00 -1.22 -0.27
Accel Maximums: 0.12 1.37 1.14
Type key when ready...

Accel Minimums: 0.00 -1.22 -0.27
Accel Maximums: 0.12 1.37 1.14
Type key when ready...

Accel Minimums: -1.18 -1.22 -0.27
Accel Maximums: 0.12 1.37 1.14
Type key when ready...

The results of the calibration sketch can be used to do a two-point calibraton as described here: Two
Point Calibration (https://adafru.it/Dva)

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 13 of 23

https://learn.adafruit.com/calibrating-sensors/two-point-calibration

Library Reference
Constructor:

Adafruit_ADXL345(int32_t sensorID = -1)

Constructs an instance of the ADXL345 device driver object. 'sensorlD' is a device identifier. It will be
returned in the sensor_event in each call to getEvent(). The sensorID has no effect on the operation of the
driver or device, but is useful in managing sensor events in systems with multiple sensors.

Initialization()
bool begin(void)

The begin() function initializes communication with the device. The return value is 'true' if it succeeds in
connecting to the ADXL345.

Sensor Details:

void getSensor(sensor_t*);

The getSensor() function returns basic information about the sensor. For details about the sensor_t
structure, refer to the ReadMe file (https://adafru.it/aZm) for the Adafruit Sensor Library.

Getting and Setting the operating range:

void setRange(range_t range)

The setRange() function sets the operating range for the sensor. Higher values will have a wider
measurement range. Lower values will have more sensitivity.

Valid range constants are:
ADXL345_RANGE_16_G
ADXL345_RANGE_8_G
ADXL345_RANGE_4_G
ADXL345_RANGE_2_G (default value)

range_t getRange(void);

The getRange() function returns the current operating range as set by setRange()

Getting and Setting the Data Rate:

void setDataRate(dataRate_t dataRate);
The setDataRate() function sets the rate at which the sensor output is updated. Rates above 100 Hz will
exhibit increased noise. Rates below 6.25 Hz will be more sensitive to temperature variations. See the

data sheet (https://adafru.it/c5e) for details.

Valid data rate constants are:

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 14 of 23

https://github.com/adafruit/Adafruit_Sensor
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf

ADXL345_DATARATE_3200_HZ
ADXL345_DATARATE_1600_HZ
ADXL345_DATARATE_800_HZ
ADXL345_DATARATE_400_HZ
ADXL345_DATARATE_200_HZ
ADXL345_DATARATE_100_HZ
ADXL345_DATARATE_50_HZ
ADXL345_DATARATE_25_HZ
ADXL345_DATARATE_12_5_HZ
ADXL345_DATARATE_6_25HZ
ADXL345_DATARATE_3_13_HZ
ADXL345_DATARATE_1_56_HZ
ADXL345_DATARATE_0_78_HZ
ADXL345_DATARATE_0_39_HZ
ADXL345_DATARATE_0_20_HZ
ADXL345_DATARATE_O_10_HZ (default value)

dataRate_t getDataRate(void);

The getDataRate() function returns the current data rate as set by setDataRate().

Reading Sensor Events:

void getEvent(sensors_event_t*);

The getEvent() function returns the next available reading in the form of a sensor_event. The
sensor_event contains the sensor_id as passed to the constructor as well as the X, Y and Z axis readings
from the accelerometer. For more information about sensor_events, see the ReadMe

file (https://adafru.it/aZzm) for the Adafruit Sensor Library.

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 15 of 23

https://github.com/adafruit/Adafruit_Sensor

Python and CircuitPython

It's easy to use the ADXL343 or the ADXL345 with Python and CircuitPython, and the Adafruit
CircuitPython ADXL34x (https://adafru.it/ESS) module. This module allows you to easily write Python code
that reads the acceleration, taps, motion and more from the breakout.

You can use this sensor with any CircuitPython microcontroller board or with a computer that has GPIO
and Python thanks to Adafruit_Blinka, our CircuitPython-for-Python compatibility
library (https://adafru.it/BSN).

The pinouts on the ADXL343 and the ADXL345 are slightly different, but the chips are essentially
identical. This page includes different wiring diagrams for each. Other than initialising the proper chip,
the code will be the same for both!

CircuitPython Microcontroller Wiring
First, wire up the breakout exactly as shown in the previous pages. Here is an example of wiring the

ADXL343 to a Feather MO:

Connect SCL on the Feather to SCL on the ADXL343
Connect SDA on the Feather to SDA in the ADXL343
Connect GND on the Feather to GND on the ADXL343
Connect 3.3V on the Feather to VIN on the ADXL343

Connect SCL on the Feather to SCL on the ADXL345
Connect SDA on the Feather to SDA in the ADXL345
Connect GND on the Feather to GND on the ADXL345
Connect 3.3V on the Feather to VIN on the ADXL345

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For
other platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 16 of 23

https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/71598
https://learn.adafruit.com//assets/82173
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

supported (https://adafru.it/BSN).

The following shows a Raspberry Pi connected to the ADXL343:

® Connect SCL on the RPi to SCL on the ADXL343

® Connect SDA on the Rpi to SDA in the ADXL343

® Connect GND on the Rpito GND on the
ADXL343

® Connect 3.3V on the Rpi to VIN on the ADXL343

......

........

Connect SCL on the RPi to SCL on the ADXL345
Connect SDA on the RPi to SDA in the ADXL345
Connect GND on the RPi to GND on the ADXL345
Connect 3.3V on the RPi to VIN on the ADXL345

UV
Library Installation
You'll need to install the Adafruit CircuitPython ADXL34x (https://adafru.it/ESS) library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your
board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find
and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/ENC). Our
CircuitPython starter guide has a great page on how to install the library bundle (https://adafru.it/ABU).

For non-express boards like the Trinket MO or Gemma MO, you'll need to manually install the necessary
libraries from the bundle:

® adafruit_adxI34x.mpy
® adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has
the adafruit_adxI34x.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/pMf)so you are at the CircuitPython >>> prompt.

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 17 of 23

https://learn.adafruit.com//assets/71600
https://learn.adafruit.com//assets/82175
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/micropython-basics-how-to-load-micropython-on-a-board/serial-terminal

Python Installation of the ADXL34x Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This
may also require enabling 12C on your platform and verifying you are running Python 3. Since each
platform is a little different, and Linux changes often, please visit the CircuitPython on Linux guide to get
your computer ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:
® sudo pip3 install adafruit-circuitpython-adxI34x

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to
use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the breakout we'll initialize it and read the acceleration and more from the
board's Python REPL.

Run the following code to import the necessary modules and create the 12C object:

import time
import board
import adafruit adx134x

i2c = board.I2C()

If you're using the ADXL343, run the following to initialise the I2C connection with the breakout:

accelerometer = adafruit adx134x.ADXL343(i2c)

If you're using the ADXL345, run the following to initialise the 12C connection with the breakout:

accelerometer = adafruit_adx134x.ADXL345(i2c)

Now you're ready to read values from and enable features of the breakout using any of the following:

® acceleration - The acceleration values on the x, y and z axes

® enable_motion_detection - Enables motion detection. Allows for setting threshold. Threshold
defaults to 18.

® enable_tap_detection - Enables tap detection. Allows for single or double-tap detection.

® enable_freefall_detection - Enables freefall detection. Allows for setting threshold and time.
Threshold defaults to 10, time defaults to 25.

® events - Used to read the events when motion detection, tap detection and freefall detection are
enables. Requires specifying which event you are trying to read.

To print the acceleration values:

while True:
print(accelerometer.acceleration)
time.sleep(0.2)

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 18 of 23

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

That's all there is to reading acceleration values from the ADXL343 and ADXL345 using CircuitPython!

Full Example Code
SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import adafruit adx134x

i2c = board.I2C() # uses board.SCL and board.SDA

For ADXL343

accelerometer = adafruit adx134x.ADXL343(i2c)
For ADXL345

accelerometer = adafruit adx134x.ADXL345(i2c)

while True:
print("%f %f %f" % accelerometer.acceleration)
time.sleep(0.2)

Motion, Tap and Freefall
There are examples for enabling and using motion, tap and freefall available on GitHub:

® Motion detection on the ADXL343 and ADXL345 (https://adafru.it/G7d)
® Tap detection on the ADXL343 and ADXL345 (https://adafru.it/G7e)
® Freefall detection on the ADXL343 and ADXL345 (https://adafru.it/G71)

Save any of the files as code.py on your CircuitPython board, or run them from the Python REPL on your
Linux computer, to try them out.

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 19 of 23

https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_motion_detection_test.py
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_tap_detection_test.py
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_freefall_detection_test.py

Python Docs

Python Docs (https://adafru.it/E7c)

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 20 of 23

https://circuitpython.readthedocs.io/projects/adxl34x/en/latest/

Downloads
Files

® ADXL345 datasheet (https://adafru.it/c5e)
® Fritzing object in the Adafruit Fritzing Library (https://adafru.it/aP3)
® EagleCAD PCB files on GitHub (https://adafru.it/rEH)

Schematic & Fabrication Print

P M M

o)

ADXL345_v@.3

F/4/2016 Fi@4:12 PH She

: *adafruj; e

Orauing: >AUTHOR Adafruit Ind
s

ADXL345 DOigital
¢ Accelerameter

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 21 of 23

http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit_ADXL345_PCB

© Adafruit Industries https://learn.adafruit.com/adxI345-digital-accelerometer Page 22 of 23

© Adafruit Industries Last Updated: 2021-05-06 08:30:32 AM EDT Page 23 of 23

	Guide Contents
	Overview
	How it Works:
	(https://adafru.it/c5f)MEMS - Micro Electro-Mechanical Systems

	Assembly and Wiring
	Assembly:
	Position the Header:
	Add the Breakout:
	And Solder!

	I2C Wiring:
	Programming and Calibration
	Install the Library:
	Test:
	Calibrate:
	Gravity as a Calibration Reference
	Calibration Method:
	Mount the Sensor:
	Load the Calibration Sketch:
	Position the Block:
	Reposition the Block:
	(https://adafru.it/c5g)
	Repeat:
	(Hint:)
	Calibration Results:
	Calibration Sketch:
	Typical Calibration Output:

	Library Reference
	Constructor:
	Initialization()
	Sensor Details:
	Getting and Setting the operating range:
	Getting and Setting the Data Rate:
	Reading Sensor Events:
	Python and CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	Library Installation
	Python Installation of the ADXL34x Library
	CircuitPython & Python Usage
	Full Example Code
	Motion, Tap and Freefall

	Python Docs
	Downloads
	Files
	Schematic & Fabrication Print

